AD-A274 691
manpeRan DT!C

ELECT Ty
 JANL 410

LY

CONSORTIUM REQUIREMENTS
ENGINEERING GUIDEBOOK

SPC-92060-CMC

VERSION 01.00.09
DECEMBER 1993

94 01392

DTXC QTALITY INSPECTED 8§

CONSORTIUM REQUIREMENTS
ENGINEERING GUIDEBOOK

SPC-92060-CMC |2/

NTIS CRA&I ad
DTIC TAB 0
Unannounced]

Justitication

By

VERSION 01.00.09 Distribution |

Availability Codes

DECEMBER 1993 Avail and/or

Dist Specal

B |

Produced by the
SOFTWARE PRODUCTIVITY CONSORITUM SERVICES CORPORATION
under contract to the
VIRGINIA CENTER OF EXCELLENCE
FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road
Herndon, Virginia 22070

Copyright © 1992, 1993, Software Productivity Consortium Services Corporation, Hemndon, Virginia. Permission to use, copy,
modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and
provided that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear
in supporting documentation. This material is based in part upon work sponsored by the Advanced Research Projects Agency under
Grant #MDA972-92-J-1018. The content does not necessarily reflect the position or the policy of the U. S. Government, and no
official endorsement should be inferred. The name Software Productivity Consortitm shall not be used in advertising or publicity
pertaining to this material or otherwise without the prior written permission of Software Productivity Consortium, Inc. SOFTWARE
PRODUCTIVITY CONSORTIUM, INC. AND SOFTWARE PRODUCTIVITY CONSORITUM SERVICES
CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THIS
MATERIAL FOR ANY PURPOSE OR ABOUT ANY OTHER MATTER, AND THIS MATERIAL IS PROVIDED
WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

CONTENTS

1.1 Purpose of This Guidebookceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnae.
1.2 Intended AUdIENCEcoivniiiinieininentrennnnnetiniossneeennncannens
1.3 Scope of the Method and Guidebookccovviiiieiiiiiiiinniinnnnn.
1.4 Organization of the GuideboOkcciiveriiiiiiiiiiiiiiiiiiierieannnans
1.5 Using This Guidebookccviieiiieiiiiiiiiiiiiiiiiiiiiiiiiiiinnnae.
1.6 Typographic CoONVENtionscieveeeneennnraeeeisrorsnnrasscennnens
2.1 COREProcess OVEIVIEWutvriinennueinneeeiennscesnnecsnasosncesons
2.2 Purposec of the COREModelsoovvvniiiiieiiiiiiiiiiiiiiiieinneinaen
2.2.1 Rationale for the CORE Approachcccoviuiiiiiiiiiiiiinanans
2.2.2 Purpose of the Behavioral and ClassModelsccoiiiin,

2.3 The CoRE Behavioral Modelccoviriiiniieiinniiiiennennrncnnnnennss
2.3.1 Environmental Variablesccooiiiiiiiiiiiiiiiiiiiiiiiiiiias,
232 The COREREIAtiONSooiiiiuiininiiiinnieinniennennciennennnnes
2.3.3 Relations NATand REQ ... cooiviieiiiiiiiiiiiiiiiiiiiiienannnnen.
2331 Relation NAT otiiiiiiiiiiiiiieieninetieecennereansenans

2332 RelationREQviviiniiiereiereeiiiinnietneeesninsncennnns

23.4 Relations INand OUToiiiiitiieieiininieinernsiniiecienennacns

24 The CoOREClass Modelcoiiuniiiiiiiiiieiiiiiiiiinrinneenneennaass
24.1 Objects and Classescccvevieensueenereneecansrsacenseossncanns

Contents

2.4.2 Packaging Relationships Among Classesc...ooiiaaea... 2-12
24.2.1 Encapsulatesc.ciiiiiiiiiiiiiiiiiiiitiiiiiiiiiieiaees 2-12
2422 Depends-ON ... oovitiieiitiretaetetartateiaattetitriiairaaennas 2-13
2.4.2.3 Generalization/Specializationcoiiiiiiiiiiiiiian, 2-14

2.4.3 Allocating the Behavioral Modelto Classeso.l.. 2-15

3. AN EXAMPLE: THE FUEL LEVEL MONITORING SYSTEM 3-1
4. REPRESENTING THE CoRE BEHAVIORAL MODELc.c..e... 4-1

4.1 Representing the Functional Viewcoviiiiiiiiiiiiiiiiiiiiieenans. 4-3
4.1.1 Monitored and Controlled Variablescccciiiiiiiiine, 4-3
4.1.2 Conditionsovviriiireriiieirieeretareiireeternetaettactinnsnnan 4-3
4.1.3 Events and Event EXpressionscoovveieiiiiiiiiiececceteneeneannnns 44

4.1.3.1 Definftions ...cviviiireeienntereieeiareiieetreesennencsnnnns 44
4.1.3.2 Implementation Considerationscccoiieiiiiiiniennnnn. 4-5
414 TBIMS .. otiiiiiiieieiieieerocaseceassossossosecssasceosncnsnsones 4-5
4.1.5 Capturing State HiStOIYccvvueriiineeiiieeniinnereninneesnnnens 4-6
4.1.5.1 Modesand Mode Machinesccovieiiineieiiinnniiinncenn. 4-6
4.1.5.2 Mode Transition Diagramccciiiiiiiiiiniiiniiaa.. 4-7
4.1.5.3 Mode TransitionTablescoiiviiiiiiiiiiiiiiiiiiiiiae, 4-7
4.1.5.4 Properties of Mode Machinescceoiiiuieiiianeiiian... 4-9
4.1.6 Tabular Representation of Functionscovviiiieiiiiinnnninnne, 49
4.1.6.1 ConditionTablecociiuiiiiiiiiiiiiiiiiiiieiiienniannns 4-10
4162 EventTablecouiiiiienininrenieeeninerecrennneecnnneens 4-10
4163 SelectorTablecccovvevenennenn. EERERETRR TP PPRRPPY 4-12

4.2 Representing the Dynamic VIEWcccieiieiiiiiiiiniiinrenerennennn. 4-12
4.2.1 PeriodicSchedulingcceviiuimiriininiiiieirenniiennnnnss 4-13
422 DemandSchedulingccccviiiiieiiiiiiiiiiiineieeeianannnnns 4-14

4.3 Specifying REQ, NAT, and Undesired Eventscocoivviiineninnn, 4-15

N A S M Bt s i S SR K O PRI

Contents

4.3.1 Specifying Controlled Variable Behaviorcocociiinine. 4-15
4.3.2 Specifying NAT Relationscccvveiiieniernnenerinennnennnnnss 4-16
4.3.3 Specifying Required Responses to Undesired Events 4-17

5. REPRESENTING THE CoRE CLASSMODELc.ccvvvetenrecennnns 5-1
5.1 Information Model........oovviiiuriiiiiiii ittt et e ittt iaas 5-1
5.1.1 Generalization/Specialization Relationship 53
512 AgEregationiiiiiiiiiiiiiii i it i it r it e e 5-3
5.1.3 Application-Specific Relationshipcocoiiiiiiiiiiiiaiians, 5-4
S2Class Definitionscoieiiiiiniiiiiiiiiiiiiiiii it e 54
5.3 Diagraming Conventionsooeiivinnnieiinnaeeinecretsarosenseanss 5-6
5.3.1 Context Diagramccoveerevinuetensecneecsneeenssesocsorassonns 5-6
532 Dependency Grapho vuiiiiiiitiiinreinetiiiienteannnscssonns 5-7
S33 Leveling ..oovveinniiiiiiii ittt i i i ittt e e e aes 5-8

5.4 Class Specificationcocviiiieriiiiiiiiiiiiieiiiieittiiiasensoaancas 59
54.1 Class INterface . .. ovvveieieininrieniieeieiaeaeiereeeninennscnansnns 59
5.4.2 Class Encapsulated Informationcooiiiiiiiiiiiiineninneens 5-10
B B 0 - 5-10
S4.4 INheritaNCe . . o covvtiit ittt ettt ittt e raaaaans 5-12

5.5 Class Model Notation Summarycoveiiiiiiniiiieiniecennncrenenns 5-14
6. CoRE PROCESS OVERVIEWccc0vetetuecesaccssscennosascscscses 6-1
6.1 The Idealized CORE Processccovieiiiiiiniernenonenncennsanss 6-1
6.1.1 Identify Environmextual Variablesooviiiiiiiiiiiiii i 6-3
6.1.2 Preliminary Behavior Specificationoiiiiiiale, 6-4
6.1.3 Class StUCtUMING ooveiniintie it iiatiteennianacsnsensonaennsns 6-4
6.1.4 Detailed Behavior Specificationooiiiiiiiiiiiiiiiiiae. 6-5
6.1.5 Define Hardware Interfacec.iiiiiuinuenneininneenuennnns 6-6

6.2 COREINPractiCeccoiiiiiiniiiiiiiiiiiiiiiiieieiinieneranciannnes 6-7

6.2.1 Specifying Required Behaviorcccoiiiiiiiiiiiiiiiiiiinn 6-7
6.2.2 Iteration Among CoRE Activitiescccovviiiviiiiiinnienne, 6-11
6.2.3 Managing Requirements Developmentcoioiiiiiiait, 6-12

7. IDENTIFY ENVIRONMENTAL VARIABLEScccccc00eveceennavacess 7-1

5 € TR 71
72 Entrance Criteriaccovviiineieiiaieiuarsenesesstsesssssnssansannans 7-2
7.3 Activitiescoviiiiiiiiiiiiiiiiiiiiiiiieee betaeseesiiectectaaeans 7-2
7.3.1 Identify and Define Attributesccvieiiiireercieiiiiennnennns 7-3
732 Identify ENtItIeSccvviinnnunirieaansrecnennecnsonsnsssssosasos 7-5
7.3.3 Identify Generalization/Specialization Relationccoovvieeenennen 7-5
7.3.4 Identify AggregationRelationoiiiiiiiiiiiiiiiiiiiea... 7-6
7.3.5 Identify Application-SpecificRelationccoeiiiiiiiia.., 7-6
7.3.6 Identify Likely Requirements Changes and Associated Variables 7-9
7.4 Evaluation Criteriacovittiiiiiiiiiiiiiertoeiesetesssansennnnnns 7-10
75 Exit Criteriacooiiueiiiiiiineiiiiiiiieieinererssencesocsasssnnnnns 7-10

8. PRELIMINARY BEHAVIOR SPECIFICATIONccccieeeeininnnocacesns 8-1

25 1 8-1
82 Entrance Criteriacooiiiiiiiiiiiiiiiiiiiiiiiiiertetscionnsananens 8-2
8.3 ACHVILIESvieieiiiiiiiiieiiieiiieenseosenrenosscesosasosannncsns 8-2
8.3.1 Identify and Define Monitored and Controlled Variables 8-2
8.3.1.1 Identify Controlled Variables...........coiiiiiniiiinnraiannnnes 8-2

8.3.1.2 Identify Monitored Variablescccoiiiiiiiiieiinenne. 8-3

8.3.1.3 Define Monitored and Controlled Variables - 85

8.3.1.4 Create the System Context Diagram...........ccveiiiiinienennn.. 8-7

8.3.2 Establish Controlled Variable Function Domainsc.ecovuvinnnen. 8-7
8.3.2.1 Identify Monitored Variablesccoiiiiiiiiiiiiiiiinnnn 8-8

8.3.2.2 Identify Modescciiruiiniiiiiiiiiiiiiiiiiiieeneeaaan, 89

Contents

8.3.2.3 Identify Scheduling Requirementscccc0vvevennn. 89

8.3.3 Define Mode Machinesooieiiiiiiiiiiineeiarinenneanaeens 8-10
8.3.3.1 IdentifyMode Machinesiiiiiiiiiiiiniiiinaannn. 8-10

8.3.3.2 Identify Modes and Thansitionscoevverivnrncnenannns 8-11

8.4 Evaluation Criteriacoviiiereiiiiiiiiiiiiiiirnnneectsnsecansconoonnes 8-12
8.5 EXI CIIENIA +...vvvveeeeseeeeesesesreeneeeeeeeeeneeee e 813

9. CLASS STRUCTURING ..ccocceeeteconeccesecncssnscssosessassccananse 9-1

2 <7 P 9-1
9.2 Entrance Criteriaccovieinneeneeiiiiiiiiiiiiinnncronntrsniennennes 92
9.3 Class Structuring ACtivitiesccviviuiiiieiiiiiiiiiniteseniartononans 9-2
5.3.1 Create Boundary Classescoviiiiiinieeieerarenoseereeenscocsnns 9-3
9.3.1.1 Allocate Monitored and Controlled Variables 9-3

9.3.1.2 Define the Boundary Class Interfacec.ocviviiininnnn. 9-4

0.3.2 Create MOde Classescoiiuiviinneeineeieinnersnnnrsaccananns 9-7
933 Create Term Classesovvvieeiiiiinirertieeiieseseesosasnssocasnne 9-7
9.3.4 Define the Encapsulation Structureooovviieereinnenecconnnns 9-8
9.3.5 Define the Generalization/Specialization Structurec.oen. 99
9.3.6 Establish Dependenciesovviiiiiiiiiiiiiniiiiiiiiniinnennnnnans 9-10
9.4 Evaluation Criteriadoviiniiiniiiiiiiiiieeieceseesnenccaonnans 9-12
9.4.1 Evaluating Classescoveeiiiureennennnueensncecsecssconsssnnns 9-12
9.4.2 Evaluating Class Dependenciescoviiiiiiniiiinennnenannnns 9-14

9.5 EXit Criteriaovvuiiiniiiinneiiiiiiiiiiiiiieioiecieesncnsoncnnnesons 9-14
10. DETAILED BEHAVIOR SPECIFICATIONccccveieececcnenssancess 10-1
D1 B . TP 10-1
10.2 Entrance Criteriaooviutiiniierrininnerenrsnersocsnesonssncannans 10-1
10.3 ACHVItIES ... oueit ittt ittt iitienieai ettt 10-2
10.4 Define Controlled Variable Behaviorccooiiiiiiiiiiiiiinnann., 10-2

vii

10.4.1 Specify Initial Valueccoiiiiiiiiiiiiiiii it 10-3
10.4.2 Define Sustaining Conditionscocoviiiiiiiiiiiiiiiiienae. 10-3
10.4.3 Specify Demand Behaviorcooiviiiiiiiiiiiiiiiiiiiiiiieaaas 10-4
10.4.3.1 SpecifyDemand FURCtONSo cvvvvvint it iinnneeinenneananans 104
10.4.3.2 Demand Scheduling and Timing Constraints 10-5

10.4.4 Specifying Periodic Behaviorcccoiviiiiiiiiiiiiiiiiiiiennss 10-6
10.4.4.1 Specify Periodic Functionscoiiiiiiiiiiiiiiiiiiiaa, 10-6
10.4.4.2 Specify Periodic Schedulingand Timing0u0 10-8

10.4.5 Specify Tolerance Constraintsccoiiiiiiiiiiiiiiiien., 10-9
105 Refine MOde Classescovieiiniiireieinennnerincenecenessencsscanss 10-9
10.6 Refine Remaining Classesooviueiiieieiiiiiieeineiieeieereaecncanss 10-10
10.7 Revisit Class Structuringccoiviniiieiiieiieeiiieiiensnerncennconss 10-10
10.8 Evaluation Criteriaoovveiineiiiiiieriiiieiiieiinieieninieinncennes 10-11
10.8.1 Completenessooeeinreneiieinennecnasssnnssserrossencsnnsns 10-11
10.8.2 CONSISLENCY +vvuvereenneinnienenneenceneessreenstsncranconssnsanns 10-12
109 Exit Criteriacovvvumrienierienioreriereeneetnrnsneresiscenacananes 10-12
11. DEFINE HARDWARE INTERFACEcccieevvececcrcratsccccconnas 11-1
101 GORLS . .vtiiieiiiiiiii ittt ittt ittt it aees 11-1
11.2 Entrance Crit€riadcovvineiiiiiiieiiieeninieieriieeiesinsonnnsnanes 11-2
113 ACHVIIES . .vviuneiinieneieiiieiiuiineereieriteesnocinesncesncsnananes 11-2
11.3.1 Assign Input and Output Variables to Boundary Classes 11-2
11.3.2 Define Input and Output Variablescoeiiainien.. eeee 112
11.3.3 DefineINand OUT Relationsccoveiieieniiaiinieniieanns 11-3
11.3.3.1 Define IN for a Monitored Variablecoiiiiatn. 114
11.3.3.2 Define OUT for a Controlled Variableoaen 11-5

11.4 Evaluation Criteriaoviintin ittt iiiiiiiiiiiieiiiin it eceaeanns 11-6
115 Exit Criteriac.viiniinniiiiiiiiiiiiiiiiii ittt iiieiiitiiinaanns 11-7

viil

Costests
12. ANALYZING A CoRE SPECIFICATION Ceeeesecsncescnns 12-1
12.1 Monitored and Controlled Variables REREEEE R R R R LT P RP PP PPO 1211
12.2 Controlled Variable Functionscccvveeiuienenrnienenennnnnnn. 121
123 Termsand Modesoviinitniinieiiiineneeserasnrecneeocnnsansennns 122
124 IN and OUT ReIationscoiiteiiiiiniiiinnenieineieiesenronnonnns 123
12.5 Global CheckS . oo viiiiteiitieneitienesesesrsecesonesansecannonconans 123
APPENDIX A. SOFTWARE REQUIREMENTS FOR THE FUEL
LEVEL MONITORING SYSTEMcco000cievnenncnncnanns A-l
AT INtroductioncvoiiiiiiiitiieiiiiiiiitieir it tee et catreraaeaaeans Al
A.2 Requirements for the Fuel Level Monitoring Systemc..couee.... Al
APPENDIX B. CoRE SPECIFICATION OF THE SOFTWARE
REQUIREMENTS FOR THE FUEL LEVEL MONITORING
SYSTEM cectenacs csscseccccrnccsssanne teosna B-1
B.1 System Contextouuviiirieeriaeeseneaceccnncnonnnnsosnsnsesaseeneenn B-5
B.2 Fuel Level Monitoring System Dependency Graphccovvuenenn... B-6
B.3 mode_Class_In_ Operationccoiieventinneaeeenneasaaeensennanenns B-7
B3.1 ClassInterfaceociiiiiiieiiinnrineeieeneneneneeaneaneennnns B-7
B.3.2 Encapsulated Information..........civieiiiiiiniiniienneenenneenn... B-7
B33 Traceabilitycooiiiiniiiiiiiiiiitiieeiiiaiiieteieaeeaaa, B-8
B4 class Fuel Tankooiiniiiiiiiiiiiiiiiiiiiiiiiiiinianieeiennnannnns B-9
B4.1 ClassInterfacecciiiiiiniiiiiiiieiiiniiieranernarneaenenns B-9
B.41.1 NATRelationccivviiiineiiiineriesianencnecsneasnnranns B-10
B.4.2 Encapsulated Informationcccooviiiviiiiiiineniininreeanenennns B-10
B.4.2.1 InputVariablescooviiiiieiiieiiinreieeanioneencecnanns B-10
BA422 INRelationcoovitiiniiniiiiininieineeenencansocnncnnns B-11
B43 Traceabilityccouuviueiiurneineinennrenenrencnnensnneanennn B-12
BS class Pump ...t i i i ittt e i, B-13
B.5.1 ClassInterfacec.oveiiiinniinnnineinneenenereeecessonnnnnns B-13

B.5.2 Encapsulated Informationo, B-13
B.5.2.1 REQRelationc.u.... RETERPRTRPPTRPRTP PR RRREE B-13
B.522 Output Variablesoovviiiiiiii ittt iiiiii s B-14
B523 OUTREIAtON . ..vuiveeeieneiiisiiiiiaiineieinennsinenns B-14

B.53 Traceabilitycovvvuiiniiieniniiiiiiiii ittt B-14

B6 class TIMEoiveiiineeeirueennrreerenesoesensiscssssenrossosesnnnns B-15

B6.1 ClassINterfaceceevueeiuennrnronornnoinsnesareseascnseens B-15

B.6.2 Encapsulated Informationcooeenineiiiiiiiiiiiiioieian.. B-15
B.6.2.1 Input Variablescocoiiiiiiiniiiiiiiiiiiiiiiiieiiieaen, B-15
B622 INREIAtONvvviininiiniiiiiiienerineneninsaniaeerannanns B-15

B.63 TrACEADIHLY -« . enenvee et eeeneneeeeneae e e e e anaaans B-15

B.7 Class_OPeratorcovieteiinesoaeenuronecoseonncosonssonssssnnsasaans B-16

B7.1 ClasSINtErfacevoueinriueennreuenronerorossenesncnesnecnnnnnn B-16

B.7.2 Encapsulated INfOrmationvvveiuienrenreerenrnnnrenecssennnns B-16

B.7.3 Traceabilitycoiviiniiniiiiieiiinnrrirennienenieeninnnnnns B-16

B.8 class_Operator_COmMmMUNICationoevvenvenneneenninrenenerincnnnns B-17

B8.1 ClasSINterfacecevvveevniionnneeneoionenncnennennneocsenns B-17

B.8.2 Encapsulated Information....... e e s tei it B-17
B.82.1 REQREIAtioncoviiriiniiinienineennnneeeereennnseinnnnnns B-18
B822 Output Variablesoooviiiviiiivnrenneneenrininneneinnenns B-21
B823 OUTREIAtON ..o iveiitiniiniiineenranssnierseoneeinannnns B-21

B.8.3 Traceabilityc.ouvuiiiniiiiiiiiniinniieenieneiiennenneniennenns B-22

B9 class SWItChcuviniiiiniiiiiiiieiiieiiireiieeriiaeiiiiereriaiineans B-23

B9.1 ClasSINterfaceooveiiiiiievnineennaereereessessnnnseronns B-23

B.9.2 Encapsulated Informationc.cceiiiiiiiiiiiiiiiiiiiiia... B-23
B.9.2.1 Input Variablesccoiiiiiiiiiiiiiiiiii it B-23

BO.2. 2 INREIAtON .. iiiiieteiiinireieesocereteeerassencneronenannes B-24

RSN I M P S R i S el - Dacashi

Conlests

B9.3 Traceabilityccoiuiiniuiiiiiiiiii it eiaiieraaaaaaas B-24

B.10 Safety REQUITEMENLSovtininnntiiiiii i eieieiireernsarencnnens B-24
B.11 Security REQUITEMENLSccviiitiieiiieiiiiiitienriuraeanranenenns B-25
B.12 Other Requirements F B-25
APPENDIXBINDEXc.v00u0ee sesraansvenas seecscasee sessesssscne B-26
APPENDIX C. CoRE MAPPING TO DOD-STD-2167A cosesvensans C-1
Cl Introductionccoiivieiiiiniennans P C-1
C.2 Software Requirements Specificationccocveiiiiiiiiiiiiiiiiiienans C-3
C.2.1 SRS Paragraph 3.1: CSCI External Interface Requirements C3

C.2.2 SRS Paragraph 3.2: CSCI Capability Requirements C-3

C.2.3 SRS Paragraph 3.2.x: (Capability Name and Project-Unique Identifier) C4

C.2.4 SRS Paragraph 3.3.: CSCI Internal Interfacesce.tn. - C4

C.2.5 SRS Paragraph 3.4.: CSCI Data Element Requirements C4

C.2.6 SRS Paragraph 3.5.: Adaptation Requirementscoocvuunnn. C4

C.2.7 SRS Paragraph 3.5.1.: Installation-DependentData C4

C.2.8 SRS Paragraph 3.5.2.: Operational Parameterscouevnenns. C4

LIST OF ABBREVIATIONS AND ACRONYMScciievnenennss ceseseens Abb-1
GLOSSARY ..utvviitieececesscsssnsenssossassssscssssssssscssonsscnas Glo-1
REFERENCES meesacscsncncs Seessssssscaasssssescencotarccae Ref-1
BIBLIOGRAPHY Ceececessarsaarecssecnarrnosesansasensseras Bib-1
1)) Ind-1

xi

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 3-1.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.

FIGURES
System ViewedasaBlackBoxciiiiiiiiiiiiiiiiiiiiinnee,
System Viewed With Input and Qutputot
The Behavioral Model Relationscooeviieeiiieiiiiiiiiiiae,
Graphic Depiction of the Depends-on Relationooueel.
Canonical Allocation of Behavioral Model to Classes
Fuel Level Monitoring System Pump and Tank Configuration (Front View) .
Representation of CORE’s Functional Viewcoovviiieinet,
Example of a Mode Transition Diagramcoviivveniinnnnnenn.
The Semantics of INMODE, EXITED, and ENTERED
Time Line for Periodic Controlled Variable Process
Time Line for Demand Controlled Variable Process
Pump Entity and Attributes Exampleccoviiiiiiiiiiiiiian..
Entity-Relationship Diagram Notation

................................

Generalization/Specialization Entity-Relationship Diagram Notation
Aggregation Entity-Relationship Diagram Notation

Application-Specific Relationship Notation

oooooooooooooooooooooooooooo

Class Structuring Notation

oo

Representation of an Overview of a Specification Using a Context Diagram .

Dependency Graph Notation

oo

Class Structuring Leveling Diagramsccoiiieiiiniieniniiinnnan

Class Interface Notation

..

Encapsulation Structure Notation

oooooooooooooooooooooooooooooooooooo

5-5
5-7
57

Figure 5-12.

Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 7-1.
Figure 7-2.
Figure 8-1.
Figure 8-2.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 11-1.
Figure 11-2.
Figure B-1.
Figure B-2.
Figure B-3.

class_Engine Diagram it iiiiiiiiiiiiiiaiiiiean.
class_Engine Diagram WithObjectscoiiiiiiiiiiiian.,
Inheritance Notationcociineiiiiiiiiiiiiiienreeienencnnenns
Class Model Notation Summaryc.coiiiieeeerianenereesneannnns
CoRE Activities and Productscovieiiiiiiiiiiiineea..,
Resultsof Steps1and 2 e teeuasaseesesarseanbaasnnsanane
Resultsof Steps3and 4oouiiuiiiiiiiiiiiiiiiiiiiiineinenenas
Resultof Steps 5and 6ovvviiiiiiiiiiiiiiiiiiiiiiiiiieinnnnnes
Resultsof Steps 7and 8ccviiiiiiiiiiiniieieienoieiannenns
Information Model for the Fuel Level Monitoring System
Weapon and Target Constraintcoovtiiiieiiiieienneeennnneas
Controlled Variable Overview for con_Low_Alarm......................
Using a Mode Transition Diagram to Represent mode_class_In_Operation .
Partial Definitions of class Fuel Tankcovcviiieviniiinnnnnnnns
Mode Class Interface Examplecoooiiiiiiiiiiiiiieinininnnnnnns
Dependency Graph for Operator Interfacecoovveiviiiininnnn.s
Generalization/Specialization Examplecooiiiiiiiiaee,
Fuel Level Monitoring System Dependency Graphccovvueenn..
IN Relation for in Diff Pressccovvieinieiiiiiiiininniennnenns
Accuracy Specification for in_Diff Press............oooiiiiiiiiiiaL,
Fuel Level Monitoring System: Context Diagramc.c......
Fuel Level Monitoring System Dependency Graphc.cvvvinann.
Fuel Level Monitoring System Pump and Tank Configuration (Front View) .

511
5-12
514
5.15
6-2
68
6-9
6-10
6-10
7.7
7.9

8-13
9-5

9-9
911
9-13
114
11-5
B-5
B-6
B-9

xiii

TABLES
Table 2-1. Specification Properties Versus CORE Mechanismcouee. 24
Table 4-1. Template for Monitored and Controlled Variable Definitions 4-3
Table 4-2. Using a Table to Represent the Mode Machine In_Operation 4-8
Table 4-3. FormatofaConditionTablec.coviviiiiiiiniiiiiiiiienneen, 4-10
Table 4-4. Example of a ConditionTableooviiiiiiiiiiiiiiiiiieine., 4-11
Table 4-5. FormatofanEventTableccoeviiiiiiiiiiiiiiiiiiieieienn, 4-11
Table 4-6. ExampleofanEventTableccoviviiiiiiiiiiniiiiniiiennn, 4-12
Table 4-7. FormatofaSelectorTableccoiiviiiiiiiiiiens civinnnenn, 4-12
Table 4-8. ExampleofaSelectorTablecoovvviviiiiiiiiiiiiiiiiiiiann. 4-12

Table 4-9. Template for a Controlled Variable with Periodic Scheduling Constraints ... 4-15
Table 4-10. Template for a Controlled Variable With Demand Scheduling Constraints .. 4-16

Table5-1. EntityTemplate......oouviiiiniiininniiniieiiiisnereneennroenncnns 52
Table 5-2. Partial Attribute Matrix for Fuel Level Monitoring System 53
Table5-3. ClassTemplateoovuiiiiiiiiiiiiiiiiiiiiiiiiiiniieneuenennnnes 5-5
Thble 54. superclass ATemplateccovviiiieiniiiiineiiieeieieinenennnens 5-12
Table 5-5. class BTemplatec.ciinieiuniiiiiieeiireiierneennenoecannans 5-13
Table 5-6. class_C Template 5-13
Table 5-7. Class Template Summarnyccoveiiiiiireiieieierenrsiereneneens 5-14
Table 7-1. Sample Fuel Monitoring System Attributesoo.... 7-4
Table 7-2. Sample Definition of an Enumerated Attributeo.... 74
Table 7-3. Sample Definition of a Numeric Attributeiiiil 7-5
Table 74. Semple Fuel Level Monitoring System Entities and Attributes 7-6

p—

Table 7-5.

Table 8-1.

Table 8-2.

Table 10-1.
Table 10-2.
Table 10-3.
Thble 10-4.
Table 10-5.
Table 11-1.
Table 11-2.
Table 11-3.
Table 11-4.
Table 11-5.
Table C-1.

Table C-2.

Fuel Level Monitoring System Attribute Matrix
Definition of Enumerated Environmental Variable
Definition of Numeric Environmental Variable
Event Table Example (Incomplete)
Event Table Example (Completed)
Initial Condition Table Example (Incomplete)
Condition Table Example (Completed)
Initiation and Termination Events for con_Status
Input and Output Variable Template
Sample Definition of Input Variable Diff_Press

Sample Definition of Output Variable Shutdown Signal .

ccccccccccccccccc

.................

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

ooooooooooooooooo

Sample OUT Relation for Controlled Variable con_Shutdown_Relay

Sample Tolerance and Delay for Controlled Variable con_Shutdown_Relay .

Relationship of CoRE, Specification Elements to the

Software Requirements Specification

Example of CSCI System States Mapping to Capabilities

ooooooooooooooooo

This page intentionally left blank.

ACKNOWLEDGMENTS

The following contributors have been instrumental in developing the CoRE method and this
guidebook:

StuartR. Faulk, James Kirby, Jr., Lisa Finneran, and Assad Moini authored this version of the
guidebook.

Paul Ward has worked as both consultant and reviewer on the CoRE project. He has been
instrumental in helping develop CoRE'’s class model.

John Brackett assisted in identifying the problems CoRE addresses and has provided excellent
reviews of this guidebook.

Guy Cox, Doug Smith, and Steve Wartik contributed to the development of CoRE.

Much of what is good in this guidebook is due to excellent reviews provided by John Brackett,
Paul Clements, Ron Damer, Howard Lykins, Vance Mall, David Parnas, and Paul Ward.

The production quality is due to the technical editing of Mary Mallonee, word processing by
Debbie Morgan and Deborah Tipeni, and clean proofing by Betty Leach and Tina Medina.

1. INTRODUCTION

The Consortium Requirements Engineering (CoRE) method is a method for capturing, specifying,
and analyzing software requirements. The Consortium has worked with industrial developers of
real-time and embedded systems to identify their key problems and to provide a method that address-
es their needs. CoRE supports the development of precise, testable specifications that are demon-
strably complete and consistent. CoRE also supports key process issues, such as managing changing
requirements and reuse. CoRE is a single coherent requirements method that:

Integrates Object-Oriented and Formal Models. Behavioral! requirements in CoRE are written
in terms of two underlying models: the behavioral model and the class mode. The behavioral
model provides a standard structure for analyzing and capturing behavioral requirements
(i.c., what the software must do) in a form that is is precise, analyzable, and testable. The class
model provides facilities for organizing a CoRE specification into parts; it provides facilities
supporting change management, reuse, and concurrent development. These models are
integrated in a single CoRE specification.

Integrates Graphical and Rigorous Specifications. A key goal of the method is to improve
communication among the parties involved in requirements engineering. CoRE provides a
graphic representation that helps all parties, customers, engineers, designers, and program-
mers grasp essential relationships among system components. CoRE also provides a rigorous
underlying model for capturing detailed behavioral, timing, and accuracy constraints. This rig-
orous model allows you to developrequirements that are precise, unambiguous, testable, and
demonstrably complete and consistent. CoORE provides a consistent interpretation of both
graphical and rigorous notations so they combine smoothly in a single specification.

Uses Existing Skills and Notations. The language used to specify requirements in CoORE is based
on familiar concepts and existing notations. You can apply CoRE using basic concepts familiar
to programmers and others writing requirements, e.g., events, Boolean expressions, and state
machines. Although CoRE is based on an underlying matherhatical mode, just as program-
ming languages are based on formal models, CoRE can be applied without a detailed
understanding of formalisms.

Awvoids Premature Design Decisions. CoRE allows you to specify requirements without
prematurely specifying design or implementation details. CoRE describes required behavior
in terms of relations that the software must maintain between quantities that the software
monitors and those it controls. This allows you to specify what the software must do without
having to provide an algorithm or detailed design.

1. Sometimes called functional requirements. This guidebook reserves the use of the term function to refer to mathematical
functions and uses behavior to describe the software’s visible effects.

1-1

1. Introduction

* Provides Guidance. The CoRE behavioral model provides practical guidance in eliciting software
requirements, developing a requirements specification, and analyzing the specification for
completeness and consistency. The behavioral model defines exactly what requirements information
must be captured, and in what form, to develop a compiete and consistent specification.

1.1 PURPOSE OF THIS GUIDEBOOK

This guidebook provides a detailed guide to the practice of CoRE. It is intended as an engineering
handbook that systems and software engineers can use as a reference when applying the CoORE
method. It describes the following:

* The goals and benefits of the CoORE method

* The underlying concepts and principles used to develop rigorous requirements specifications
in CoRE

* The set of notations and specification techniques needed to write a CoRE specification

* A complete requirements development process starting with system-level requirements as
input and ending with a software requirements specification as output

* Heuristics for applying specific techniques to accomplish your specification goals, such as
reuse or change management

* Criteria and a process for checking a CoRE specification for completeness and consistency

¢ Illustration of the techniques and heuristics through a common example—the Fuel Level
Monitoring System (FLMS).

This guidebook is arranged for self-study. Read front to back, this guidebook presents the CoRE
method as a logical progression of topics beginning with basic concepts and notations.

1.2 INTENDED AUDIENCE

This guidebook is intended for engineers developing the requirements for production-quality
software.

Experience in the development of real-time systems, particularly real-time system requirements, is
needed to fully understand the details of CoRE. All of the notations specific to CoRE and their yse

are described in this guidebook. This guidebook assumes only a basic knowledge of the following
concepts:

¢ Finite state machines
o Sets
e Boolean expressions

How these concepts are used to represent requirements in CoRE is fully described in this guidebook.

12

1. Istroduction

1.3 SCOPE OF THE METHOD AND GUIDEBOOK

The version of CoRE described in this guidebook supports specification of requirements for real-time
embedded systems. CORE provides a behavioral model of embedded system behavior; this is
described in detail in Section 2. The behavioral model addresses behavioral requirements, including
those for precision, timing, and accuracy.

Software requirements that are most easily captured using CoRE are those with properties that are
consistent with the CoRE behavioral model. CoRE expresses requirements by defining the relation-
ships the software must maintain between changes in the environment that the software monitors and
the required effect on the devices, displays, and other observable quantities that the software controls.
These are properties typical of embedded control systems, such as avionics and process control

systems.

The CoRE guidebook currently does not provide explicit guidance for modeling complex data
relationships and data transactions. Thus, this guidebook does not directly address parts of applica-
tions whose primary purpose is maintaining complex databases and implementing data transactions.
These include some data-intensive command, control, communications, and intelligence (CI) and
information management systems. Subsequent Consortium products will prmnde methods and
guidance for applying CoRE to C3] systems.

The scope of this guidebook includes all of the activities and products necessary for developing a
detailed software requirements specification from system requirements. This guidebook addresses
behavioral requirements (sometimes called functional requirements), timing constraints (including
performance requirements), accuracy constraints, and software and hardware interfaces. It does not
directly address some nonfunctional requirements, such as maintainability or capacity requirements.
However, your current approach to these requirements can be used with CoRE.

1.4 ORGANIZATION OF THE GUIDEBOOK

This guidebook is structured to support self-study and for use as a reference. In particular, it is
organized so it presents a logical progression of topics and a logical sequence of activities when read
from front to back as follows:

¢ Introduction and Background. Sections 1, 2, 4, and 5 provide the introductory material
necessary to understand CoRE’s purpose, to gain an overall perspective of the way CoRE
models requirements, and to understand the notational conventions used throughout the
guidebook.

e Example. Section 3 introduces the sample problem, the FLMS, that will be used throughout
the guidebook to illustrate CoRE concepts. A more detailed prose specification is given in
Appendix A, and a complete specification of the FLMS is provided in Appendix B. The
detailed process sections (Sections 7 through 12) discuss pieces of the specification in detail
and provide rationale for their construction.

* CoRE Concepts and Notation. Sections 4 and 5 describe the underlying concepts, syntax, and
semantics for representing the CoRE behavioral model and CoRE class model.

® CoRE Process and Activities. Sections 6 through 11 describe the CORE process and give detailed
guidance for each of the CoRE activities. Section 6 gives an overview of the CoRE process

1.3

1. Introduction

from both an idealized and a practical perspective. Each of the subsequent sections describes
one of the CoRE activities in detail.

* Analyzing and Using a CoRE Specification. Section 12 of the guidebook describes an overall
process for analyzing completeness and consistency of a CoRE specification. This section
discusses the detailed analyses provided in Sections 7 through 11 in the context of the overall
process. :

1.5 USING THIS GUIDEBOOK

This guidebook is primarily intended as a reference for practitioners of the CORE method, but it can
also be used, with supporting documentation, as a tutorial.

* Reading for an Overview. Sections 1, 2, and 6 provide a complete overview of the CoRE method.
Section 1 describes the intended use of CoRE and the role of this guidebook. Section 2 gives
an overview of the key ideas behind the CoRE method, including the standard models for cap-
turing requirements. Section 6 gives an overview of the CoRE process, including the inputs,
outputs, and key decisions in each CoRE activity.

o Using the Guidebook as a Reference. Sections 4 and 5 provide detailed discussions of the
notations used to represent the behavioral and class models, respectively. Sections 6 through
11 provide a detailed guide to applying the CoRE method. Use Section 6 to get an overview
of the process and understand which detailed process section applies. Use the detailed process
section to understand a particular CoRE activity. Each of the detailed sections describes (for
a given CoRE activity) the inputs needed, the work products produced, the detailed
procedures, use of CoRE notation, and applicable heuristics.

o Using the Guidebook for a Tutorial. As a tutorial on the CoRE method, this guidebook is
designed to be read from front to back. Section 2 introduces all of the important CoRE con-
cepts, including the standard model for specifying CoRE requirements. Section 3 describes
an example of an application; this example is used throughout the text to illustrate the method.
Sections 4 and 5 describe the CoRE notations and their use. Section 6 gives an overview of the
CoRE process and summarizes the key inputs, outputs, and decisions made in each CoORE
activity. The subsequent sections then describe the activities in detail.

1.6 TYPOGRAPHIC CONVENTIONS

This guidebook uses the following typographic conventions:

Seriffontcovviviiianinn General presentation of information.

Italicized seriffont Mathematical expressions and publication titles.

Boldfaced seriffont Section headings and emphasis. Section headings of a
CoRE template.

Boldfaced italicized serif font Run-in headings in bulleted lists and low-level titles in the
process section.

14

1. Introduction

Sansseriffont Variable names, expressions, or mode names from a CORE
example in the text. Specific parameters of a CoRE
specification in the text.

ltalicized sans seriffont Within commands, generic values to be supplied by the

user, in a CoRE example in the text, and in a CoRE term.

1-5

1. Istroduction

16

2. THE CoRE MODELS

CoRE is a method for capturing, specifying, and analyzing real-time software requirements. CoORE
provides a step-by-step approach, including principles and guidelines, for proceeding from system-
level requirements to a precise, testable software requirements specification. A CoRE specification
captures requirements in terms familiar to the customer (i.e., physical quantities monitored and con-
trolled by the software) so issues of customer validation are addressed early in the development pro-
cess. A CoRE requirements specification provides a precise description of the range of acceptable
software behaviors; thus, a CoRE specification provides a common vehicle for communicating re-
quirements among developers or contractors, acquisition managers, and users. A CoRE specification
serves as both the test-to and design-to specification, ensuring that designers and testers are working
to the same requirements. A CoRE specification is also sufficiently rigorous that the requirements
can be analyzed for completeness and consistency. This helps the developer ensure that requirements
errors are identified and corrected early in development.

This guidebook provides a description of all the CoRE activities and the order in which you are most
likely to pursue those activities. CORE provides evaluation criteria for deciding when an activity is
complete. Each CoRE activity is defined by its entrance criteria, subactivities, evaluation criteria, and
exit criteria.

A CoRE specification is written in terms of two underlying models: the behavioral model and the class
model:

e The behavioral model provides a standard structure for analyzing and capturing the
behavioral requirements of an embedded system; i.c., you specify what the software must do
in terms of the behavioral model. The behavioral model provides the mechanisms you need
to specify requirements that are precise, testable, complete, and consistent.

e The class model provides a set of facilities for packaging the information in a CoRE
specification; i.e., you organize the specification as a set of classes. The class model allows you
to divide the specification into relatively independent parts and control the relationships
between the' parts. The class model provides the mechanisms to manage requirements
changes, create reusable requirements, and develop parts of the software system in parallel.

The two models are integrated in a single work product, a software requirements specification. The
behavioral model defines the required behavior, i.c., what the software must do. The class model
guides the basic organization of the specification.

This section describes the underlying CoRE models and how they address specific requirements
issues, such as change management and the development of complete and consistent specifications.
After reading this section, you should understand:

21

2. The CoRE Models

* The major steps of the CoRE process (Section 2.1)
* The purpose and objectives of the CoORE models (Section 2.2)

¢ The CoRE behavioral model for real-time software behavior, how behavioral requirements
are captured in terms of the model, and how the bchavnoral model supports analysis of
completeness and consistency (Section 2.3)

¢ The relationship between the CoRE behavioral model and the class model, how classes are
used to manage complexity and change, and how the behavioral model guides you in choosing
and defining classes (Section 2.4)

* How the behavioral and class models are integrated in a CoRE specification (Section 2.4.2)
2.1 CoRE PROCESS OVERVIEW

The CoRE process describes a sequence of activities that you follow to developa CoRE requirements
specification. The CoRE process is driven by two concerns. The first concern is the step-by-step con-
struction of a required behavior specification in terms of the CoRE behavioral model. The goal is to
develop a complete and consistent description of the required behavior. The second concern is the
packaging of the specification in elements of the class model. This aspect of the process satisfies pack-
aging goals, such as change management and reuse. Because packaging and specification activities
overlap in time, the threads of these activities are intertwined in the CoRE process.

The input to the CoRE process is some form of system requirements. The output of the CoRE process
is a complete specification of the software requirements (i.c., suitable input for a software design pro-
cess). A complete overview of the intervening sequence of CoRE activities and products is given in
Section 6; in brief, these activities are:

» Identify the environmental quantities with which the software interacts and the constraints
among such quantities.

 Identify the software boundary by specifying the environmental quantities that the software
must track or affect.

¢ Package the environmental quantities among a set of CoRE classes and relationships.
* Define the software behavior, timing, and accuracy constraints.
» Define the software inputs and outputs.

The first two steps initiate definition of the behavioral model by establishing which environmental
quantities the software monitors and controls and the basic relationships the software must imple-
ment among them. The third step determines how the elements of the behavioral model should be
allocated to CoRE classes and the relationships among the classes. The final steps complete the class
definitions by filling in the details of the parts of the behavioral model allocated to each class.

2.2 PURPOSE OF THE CoRE MODELS

The CoRE method, including the use of the underlying models, has been developed to address specific
problems of industrial developers of embedded software. This section describes the issues CoRE has
been developed to address and how the CoORE models help address these issues.

22

2. The CoRE Models

2.2.1 RATIONALE FOR THE CORE APPROACH

In creating CoRE, the Consortium met with developers to identify their problems with current
requirements methods and tools. These representatives helped define a set of requirements that the
CoRE method should meet. These requirements are summarized below:

Critical Applications. The method must support the development of precise, testable
specifications for real-time embedded systems.

Changing Requirements. The method must support developing requirements specifications that
are easy to change throughout the software life cycle. When requirements change, it must be
easy to tell which parts of the requirements specification and other work products are affected.

Audience. The method must support the development of requirements specifications that are
understandable and useful to the specification’s entire audience, including systems engineers,
hardware engineers, and software engineers. It must support the ability to derive
customer-oriented views of software requirements.

Systern Interface. The method must support the delineation of system boundaries and the
precise specification of system interfaces that concern the software. It must support descrip-
tions of both the system and the environment in which it operates, including other systems
under development.

Separation of Concerns. The method must support the definition of requirements as a set of
distinct and relatively independent parts. It must support localizing requirements that are
fuzzy, incomplete, or defined at different levels of detail and allow work to proceed
independently on distinct parts.

Derivation From System Requirements. The method must include guidelines and examples of
required inputs for the software requirements process and the form such inputs from systems
engineering must take.

Nonalgorithmic Specification. The method must allow nonalgorithmic specification of
requirements when a specific algorithm is not actually required.

Consistent Requirements. The method must define what makes a set of requirements consistent
(unambiguous). It must include principles, guidelines, and techniques for determining wheth-
er requirements are internally consistent and for keeping these requirements internally
consistent after they have been changed.

Complete Requirements. It must be possible to determine where the requirements specification
is internally incomplete. The method must permit definition and use of incomplete require-
ments. For example, the method must allow detailing and checking of one part of the
requirements before another is complete.

The CoRE models have been developed so that these and other requirements concerns can be
addressed in a CoRE specification.

2.2.2 PURPOSE OF THE BEHAVIORAL AND CLASS MODELS

The CoRE behavioral model provides a standard structure for analyzing and capturing the behavioral
requirements for real-time embedded systems. The CoRE behavioral model is standardized in the

2-3

2. The CoRE Maodels

sense that every CoRE specification captures behavioral requirements using the same basic structures
and relationships, i.c., as a set of relationships between the quantities the software system monitors
and controls. This standardized approach allows CoRE to provide a well-defined sequence of activi-
ties and checks that proceeds systematically from the early analysis of what the software controls to
a complete specification of required behavior. The behavioral model also provides mechanisms for
expressing the behavioral requirements rigorously so the resulting specification is precise and
testable.

Because a CoRE specification is written in a rigorous language, there are systematic procedures for
determining the consistency and completeness. The use of mathematical expressions also helps avoid
overspecifying the requirements. Defining required behavior in terms of operations or algorithms of-
ten necessitates introducing decisions that are not actually requirements (e.g., the order of operations
and how one operation interacts with another). The designer cannot determine which parts of the
model actually reflect the customer’s requirements and which are artifacts of the construction. CORE
specifications capture only what the software must do, not how to do it.

A CoRE specification is structured, using object-oriented terminology, as a set of class definitions in
which a class is a template for an object. The CoRE class is the basic mechanism for dividing the speci-
fication into parts and controlling the relationships among different parts of the specification. The set
of classes and their relationships in a CoRE specification are collectively called the class model.

While the behavioral model addresses properties of the behavioral requirements, such as
completeness, consistency, precision, and testability, the class model addresses packaging concerns.
Packaging concerns are properties of a specification that result from the way information is parti-
tioned. Packaging concerns include ease of change, ease of use, encapsulation of fuzzy requirements,
and reusability. For example, if a requirement that is likely to change is encapsulated ina CoRE class
definition, only that class definition will change if the requirement changes. Table 2-1 summarizes the
properties supported by each of the CoRE models.

Table 2-1. Specification Properties Versus CoORE Mechanism

Specification Properties Supporting CoRE Mechanism

Desired Functional Requirements Properties

e Complete * Behavioral model

e Consistent (Four-variable model)

» Precise

e Unambiguous

¢ Testable
Desired Packaging Properties

» Easy to change e Class model

e Encapsulates fuzzy requirements
e Allows asynchronous development
e Readable

¢ Reusable

24

The class and behavioral models are integrated into a single requirements specification in which the
information in the behavioral model is partitioned among a set of CORE classes. The classes make
up the organization. You determine such characteristics as the number of classes, what information
is hidden, and which parts of the model are allocated to the same class based on your overall goals for
the requirements structure. You can address many of the issues of readability, reuse, and change

management by judicious packaging.

Separating the behavioral and class models is one of the key features of CoORE. The separation allows
you to make and subsequently change decisions about packaging issues with limited and controlied
effect on the meaning of the specification. The CoRE class mode! aliows you to write the specification
to have desirable properties like ease of change without designing the software.

2.3 THE CoRE BEHAVIORAL MODEL

The CoRE behavioral model is based on a four-variable model developed by Parnas and Madey
(1990) and Van Schouwen (1990). Portions of the discussion in this section are taken from Parnas and
Madey (1990). The four-variable approach extends previous work on embedded system requirements
as described by Heninger (1980) and Alspaugh et al. (1992). Many of the notations used to represent
the behavioral model are derived from this work. The four variables are monitored, controlied, input,
and output. The monitored and controlled variables are collectively called the environmental
variables.

2.3.1 ENVIRONMENTAL VARIABLES

CoRE views a software system as existing within and interacting with an environment. An automotive
engine control system, for example, exists within an environment that includes the engine parts, atmo-
sphere, external load, driver-controlled devices, and so on. Only certain quantities in the environment
are relevant to this particular system. For example, an automotive engine-control system needs infor-
mation about air pressure but not altitude. An aircraft-control system needs information about
altitude; air pressure is a means to measure that quantity.

CoRE represents each environmental quantity of interest with a mathematical variable (called an
environmental variable) so that there is a clearly defined correspondence between the variable and
the environmental quantity it models. There are two classes of environmental variables. Monitored
variables represent environmental quantities that the software system must track, €.g., the ambient
air pressure. Controlled variables represent quantities that the software system sets, €.g., the fuel flow
to the cylinders. If there is feedback in the system, a variable can be both monitored and controlled.
For example, the automotive engine system developer might define a monitored variable called
Air_Pressure measured in pounds per square inch.

2.3.2 THE CoRE RELATIONS

CoRE captures the required, externally visible software behavior as a set of relations among the values
of monitored and controlled variables. A CoRE specification maps possible values of the monitored
variables to acceptable values of the controlled variables (not computer inputs to computer outputs).
This corresponds to an intuitive notion of required behavior in that it relates specific, observable
changes in the environment (e.g., the ambient air pressure decreases) to observable actions (e.g., the
fuel flow is decreased).

2-5

2. The CoRE Mode!s

The specification of required behavior in response to undesired events (i.c., failures of system
components or of the system itself) is integrated with the specification of “normal” behavior. Engi-
neers define monitored variables to denote undesired events. This allows you to abstract from the
sources of undesired events, such as specific device failures.

The behavioral model defines the required, externally visible behavior in terms of two relations from
monitored variables to controlled variables called NAT (for nature) and REQ (for required). The
NAT relation describes those constraints placed on the software system by the external environment,
e.g., physical laws and the properties of physical systems. These are properties of the environment that
affect the software but exist whether the software exists or not. For software requirements, NAT in-
cludes the properties of the monitored or controlled hardware, e.g., the possible states of physical de-
vices, such as the maximum and minimum degree of a flap’s elevation. The REQ relation describes
the additional constraints on the controlled variables that must be enforced by the software. Inwriting
REQ, you view the software system as a black box (Figure 2-1). REQ describes properties that the
software system (i.e., the black box) is required to maintain between the monitored and controlled
variables.

Monitored
Variables

Environment

Figure 2-1. System Viewed as a Black Box

CoRE treats the software system’s actual inputs and outputs as resources available to the software to
determine the values of monitored and controlled quantities. You complete a CoRE specification by
describing the values provided by the system’s hardware devices and interfacing software systems or,
if necessary, suitable abstractions of those values called the input variables and output variables
(Figure 2-2). The relationship between the software system input and output and the environmental
variables is expressed in two additional relations called IN (for input) and OUT (for output).

Monitored
Variables
Environment

Figure 2-2. System Viewed With Input and Output

2. The CoRE Models

A CoRE specification is made precise, testable, and analyzable by describing the required
relationships as mathematical relations. A relation maps the elements of one set to the elements of
another. Each element of the first set can be mapped to one or more elements of the second?. The
first set is called the domain of the relation; the second set is called the range of the relation. In CoRE,
you typically represent these relations by mapping the possible values of the monitored quantities to
the acceptable values of the controlled quantities. This provides a nonalgorithmic description of the
required behavior. The specification is complete when the mappings are mathematically complete;
i.e., the relation defines the acceptable values of the controlled variables for all possible values of the
monitored variables. Sections 2.3.3 and 2.3.4 describe the CoRE relations and their mathematical
model in more detail.

Figure 2-3 shows the sets of variables and relations between the sets of variables; constraints within
a set are also possible, such as environmental constraints on the possible values of individual environ-
mental quantities. The NAT relation also includes constraints on monitored or controlled variables
and between variables of the same type; e.g., temperature and pressure in a sealed reaction vessel are
related quantities and change together.

s e

Mogitored Controlled
Envi ent Variables Variables) ¢
oAl 7
REQ and NAT Relations
w0

Figure 2-3. The Behavioral Model Relations

The relations of the behavioral model allow you to separate concerns for what the software system
must do, viewed as a black box, from how the software system uses available hardware resources to
do its job. The REQ and NAT relations describe requirements that will change if the purpose of the
system changes but will not change if a hardware device is modified or replaced without changing the
function of the system. The IN and OUT relations change if assumptions about the hardware or the
hardware itself change but not if the same hardware is used to accomplish a slightly different purpose.

CoRE describes ixhavioral requirements as a relation from monitored quantities to controlled quan-
tities rather thaw fr>m inputs to outputs because the relationship that the software system must main-
tain between the monitored and controlled quantities is usually simpler, easier to write, and more
intuitive than the relationship between inputs and outputs. This also allows the analyst to focus on
the behavioral requirements that the customers and users are concerned with independently of the
hardware issues. For example, an avionics system must typically track and report the aircraft’s current
position to a certain accuracy. This requirement can be expressed in terms of monitored and con-
trolled quantities by stating the relationship that the displayed position (controlled) must have

2. A function is a relation in which each element of the first set maps to exactly one element of the second set. The CoRE
relations are expressed by defining the ideal behavior as a function, then describing the allowed deviation from ideal.

2-7

e

2. The CoRE Models

relative to the actual position (monitored); e.g., the displayed latitude and longitude must equal the
actual latitude and longitude plus or minus one tenth of a degree. The actual inputs used to calculate
the position might be incremental accelerations on an inertial platform. Specifying the behavioral re-
quirements in terms of incremental accelerations would be more difficuit for both the writer and the
reader and does nothing to improve the precision of the specification.

233 RELATIONs NAT AND REQ

In the following discussion, monitored quantities are denoted as m; m,, ..., m,, and controlled
quantitics are denoted as ¢, ¢, ..., G.Because certain quantities may be both monitored and
controlled by the software system, these lists may have elements in common.

Each environmental quantity has a value that can be recorded as a function of time. For example, the en-
gine temperature has a particular value at some given time ¢. For a given environmental variable v, you
write the function, giving its value over time as V. The value of function v* at a particular time ¢ is written
vi(t). It also makes sense to talk about the vector of all monitored variable functions (m$,m, ..., m.) or all
controlled variable functions (¢}, ¢}, ..., ¢4). For the monitored variables, this is called the monitored state
function and is written M*. Similarly, the controlled state function is written C*,

2.3.3.1 Relation NAT

The NAT relation describes all of the external constraints on the values that the environmental
variables can assume. Physical laws, the properties of physical systems, and, where software is con-
cerned, the properties of the interfacing hardware all constrain the possible values that the monitored
and controlled variables can assume and the possible relations between them. For example, the NAT
relation for flight program software might specify the aircraft’s maximum rate of climb, maximum
altitude, and other constraints typically described by the aircraft’s flight envelope.

Relation NAT is defined as follows:

» The domain of NAT is the set of vectors containing exactly the values of M’ allowed by the
environmental constraints.

* The range of NAT is the set of vectors containing exactly the values of C* allowed by the
environmental constraints.

* (M, CYisin NAT only if environmental constraints allow the controlled variables to take the
values described by C* when the monitored variables have the values given by M*.

NAT is a relation rather than a function because there are typically many possible values of the
controlled variables for a given set of values of the monitored variables.

The specification of NAT is important because it explicitly captures the limits of required behavior.
For a specification to be complete, it needs to cover the set of possibilities allowed by the NAT relation.
In particular, it must define all the possible values that the monitored variables can assume, all the
possible values that the controlled variables can assume, and any constraints between their possible
values. Conversely, you need not specify the REQ relation for any state not included in the NAT rela-
tion because it cannot occur. Therefore, the NAT relation makes explicit the environmental
constraints that are implicit in most specifications. This allows a well-defined notion of completeness

2-8

constraints that are implicit in most specifications. This allows a well-defined notion of compieteness
because the analyst can ensure that the specification describes the required behavior for all possible
values the software will encounter.

23.3.2 Relation REQ

The software system imposes additional constraints on the values of the controlled variabies. These
constraints are what you typically think of as the behavioral requiremeats. For example, the heater
is required to be on if the temperature in the reaction vessel falls below S00 degrees. Equivalently, the
controlied variable that is the heater state is constrained to have the value “on” whenever the state
of the environment is such that the monitored variable corresponding to the vessel temperature has
a value of less than 500 degrees.

Relation REQ is defined as follows:

e The domain of REQ is the set of vectors containing the values of M* allowed by the environ-
mental constraints.

» Therange of REQis the set of vectors containing the values of C* allowed by the environmental
constraints.

e (M, CYisin REQonlyif the sOMc may permit the controlled variables to take the values
described by C* when the monitored variables have the values given by M".

REQis typically a relation rather than a function because there is tolerance in the required behavior
in time, value, or both. This means that each monitored variable value is associated with more than
one possible value of the controlled variables. For example, an aircraft’s operational flight program
is expected to show the current altitude plus or minus some number of feet. This is another way of
saying that, for a given externally measurable altitude, there are a number of acceptable values that
the program can display and still satisfy the requirements (i.c., any of those within the range of the
actual altitude plus or minus the allowed tolerance). Where discrete outputs permit no tolerance in
value, there is typically tolerance in time given by the maximum delay between the change in the
monitored value and the corresponding output.

While REQ is a relation, the requirements often will be easier to write and use if the relation is
specified by giving the ideal behavior as a function, then specifying the allowed tolerances in value or
time scparately. This follows standard engineering practice because the ideal function is usually much
simpler than the complete relation; it is usually easier to understand the ideal behavior first, then un-
derstand how the behavior is allowed to deviate from the ideal. The approach also provides an ap-
propriate separation of concerns because requirements for tolerances can change independently of
requirements for ideal behavior.

2.3.4 ReraTiONS IN AND OUT

Ultimately, the system development process must identify the resources available to the software to
determine the values of the monitored variables and to affect the values of controlled variables. Early
in the process, you may represent these resources by abstractions of the ultimate inputs and outputs.
When the hardware becomes defined, the interface devices provide these values. In any case, a com-
plete specification must define the resources available to the software. The behavioral model captures

29

2. The CoRE Modcels

monitored variables to software system inputs (input variables). Relation OUT gives the
correspondence from software system outputs (output variables) to the controlled variables.

Relation IN describes what the software will see in terms of the available inputs for possible values
of the monitored variables. This specifies the accuracy with which the environmental values of interest
can be measured. Let I* denote the vector (i, 4, ..., i4) of inputs to the system.

Relation IN is defined as follows:
* The domain of IN is the set of vectors containing the possibie values of M",
¢ The range of IN is the set of vectors containing the possible values of I*

¢ (M, D) is in IN only if F describes the possible values of the inputs when M* describes the
monitored values.

Similarly, relation OUT specifies (mathematically) how the controlled variables are affected by
sending particular values to the output devices. Let O* denote the vector (0%, 0, ..., o4) for each output
of the system.

Relation OUT is defined as follows:
¢ The domain of OUT is the set of vectors containing the possible values of O*.
¢ The range of OUT is the set of vectors containing the possible values of C’.

* (0% CYisin OUT only if C* describes the possible values of the controlled variables when O*
describes the output values.

In the FLMS example described in Section 3, the actual device used to determine the fuel level senses
differential pressure and represents that pressure as an 8-bit unsigned integer with a particular scale,
offset, and time delay. For this case, the IN relation must specify the exact relationship from the actual
fuel level in the tank to the values that the programreceives from the device. Note that both the accura-
cy and delay associated with the device are necessary parts of the specification. Like REQ, IN and
OUT are relations because input and output devices have limited accuracy. Both input and output
devices have associated delays.

By including the IN and OUT relations in the behavioral model, it is not the intention of CoRE to say
that a given software requirements document necessarily describes the details of the input and output
devices. It is understood that there are different conventions for allocating information to different
types of documents (¢.g., requirements versus design). The exact characteristics of the hardware may
be unknown before detailed design. Finally, where you must specify a system as layers of abstract ma-
chines, values that are represented as monitored and controlled variables at one level may be
represented as inputs and outputs in the specification of the layer below.

For a requirements specification, the IN and OUT relations serve two roles. First, where the actual
hardware providing the inputs and outputs are part of the requirements (i.c., their use is not at the
discretion of the designer), these requirements may be documented by the input and output variables
and the IN and OUT relations. Second, these relations are useful for verifying certain properties of
the requirements. You can use the IN and OUT relations to show that the software can, in practice,

2-10

the requirements. You can use the IN and OUT relations to show that the software can, in practice,
monitor the quantities it is supposed to track and control the quantities it is supposed to affect through
the available inputs and outputs. You can also show that the hardware characteristics are adequate
to support the required precision of the monitored and controlled quantities.

24 THE CoRE CLASS MODEL

The CoRE class model provides a set of facilities for packaging the behavioral model as a set of
objects, classes, and superclasses. The set of classes and the relationships for a given CoRE specifica-
tion are called its class structure. The class structure is constructed using the facilities provided by the
class model. The class model provides CoRE’s packaging mechanisms.

CoRE classes provide facilities for abstraction and encapsulation. We define abstraction as a view of
a problem that extracts the essential details relevant to a particular purpose. Encapsulation is the
process of hiding details that are not relevant to your purpose by providing an abstract interface.

CoRE applies these basic principles to requirements. For CoRE, the “purpose” of abstracting and
encapsulating requirements is to address specific packaging issues, such as ease of change, ease of use,
encapsulation of fuzzy requirements, and reusability. For example, if you expect that certain require-
meats associated with controlling an aircraft engine will be the same across several systems (e.g., the
same engine will be used for more than one aircraft), you can package those requirements in an en-
gine-control class. The class would encapsulate exactly those requirements that were common to each
use of the engine. The resulting class would then be reusable across the systems using the same engine.

CoRE differs from most object-oriented approaches in its separation between the behavioral model
and class model. The CoRE class model is not intended to express requirements or constrain subse-
quent design3. For this reason, CoRE classes are defined entirely in terms of the behavioral model.
Both the information defined on the interface of a CoRE class and the encapsulated information must
be part of the definitions of the behavioral model (e.g., part of the definition of REQ, NAT, IN, or

OUT). The definitions and relations of the behavioral model are packaged as a set of class definitions.

The definitions and relations of the behavioral model determine the software’s required behavior.
The class model determines how that information is structured, which definitions are shared (can be
used commonly), and which definitions cannot be shared.

2.4.1 OnJECTS AND CLASSES

The packaging mechanism in CoRE is the class, a template for an object. A class represents a piece
of the requirements specification written in terms of the behavioral model. The requirements allo-

cated to a class may apply in the same way to several components of the software application (e.g.,’

a class may specify the requirements associated with controlling each of the engines of a four-engine
aircraft). A picce of a requirements specification as applied to a specific component of the software
application is an object. Thus, the requirements for controlling the left inboard engine, for controlling
the left outboard engine, and so on are objects corresponding to the class of engine control
requirements.

3. Ifanobject-oriented design method isused, the CoRE class structure provides guidance in determining what requirements
have common properties (e.g., are likely to change together). However, the designer is free to refine or alter the dass
structure if necessary since jt does not define a requirement on the structure of the design.

2-11

o

2. The CoRE Models

Rather than create a separate piece of the requirements specification, i.e., a separate object, for each
piece of the software application to which the requirements may be applied, CoRE groups the require-
ments that apply identically to a group of components and specifies them in terms of a class. The basic
distinctions.are as follows:

e (lass: A class is a template for an object or a set of related objects. A class defines a set of
requirements or terms common to one or more objects. A class definition has aninterface and
a set of encapsulated information. The encapsulated information cannot be used outside of
the class definition. Information defined on the interface can be used in the definition of other
classes.

e Object: An object is an instance of a class as applied to a single component of the software
application. The object specifies a subset of the definition of REQ, NAT, IN, and OUT
relations (including definitions of the variables and terms) for a component.

s Interface: A class interface is constrained to be defined using only terms. A term must be an
expression written in terms of the monitored variables; e.g., monitored, conditions, events,
and predicates on the modes are all terms. Terms provide a mechanism for abstracting details
of the behavioral model.

Because the requirements associated with each object of a class are the same, writing out the object
definitions individually would introduce redundant information wherever there is more than one ob-
jectin a class. Redundancies in the requirements unnecessarily increase the size of the specification
and make it harder to manage changes. To keep the specification concise and to avoid redundancy,
a CoRE specification is written entirely as class (not object) definitions even where there is only one
potential object in a class.

ExaMPLE: An avionics system monitors (€.g., oil pressure, oil temperature) and controls (e.g.,
propeller pitch) each of the engines of a four-engine aircraft. The requirements implemented
by the software are exactly the same for each of the four engines (i.e., relations specifying the
required behavior are the same except for the engine number). You would then define the
engine control requirements as a class. Each object in the class would correspond to the
requirements for one of the engines. The specification then needs to contain only the
definition of the class.

2.4.2 PACKAGING RELATIONSHIPS AMONG CLASSES

The packaging properties of a CoRE specification are determined by three relationships among
CoRE classes: encapsulates, depends-on, and generalization/specialization. The specific packaging
properties of your specification are determined primarily by these relationships.

2.4.2.1 Encapsulates

A CoRE class may encapsulate the definition of other CoRE classes. A class encapsulates some subset
of the behavioral specification. One benefit of encapsulation is that it limits the impact of change.
Where the encapsulated information is complex or parts of it are likely to change independently, addi-
tional packaging may be useful. To address such issues, CoRE allows you to define a class in terms of

212

2. The CoRE Models

other classes. For example, a class Valve_Interface might define the behavior for the controlled
variable Valve and an indicator light Valve_Indicator that the software must light when the valve is
open. These are packaged as part of the same class because their values change together, but they also
represent picces of the specification that can change independently; e.g., the hardware used for each
may change, so the outputs and OUT relations may change. You can ensure that such a change affects
only one relation by defining the encapsulated part of Valve_Interface as two classes: one
encapsulating the requirements for Valve, the other containing the requirements for Valve_indicator.

The encapsulates relation induces a hierarchy on the set of classes called the encapsulation structure,
i.e., class Valve_interface encapsulates classes Valve and Valve_Indicator and is one level above them
in the encapsulation hierarchy. CoRE constrains the encapsulates relation so that all requirements
are defined by the classes at the leaves of the hierarchy. In particular, the leaf classes, such as Vaive
and Valve_Indicator, must contain all of the definitions of the REQ, NAT, IN, and OUT relations.
Classes above the leaves may export terms defined by their encapsulated classes and may define addi-
tional terms that are functions of the terms or variables defined by their encapsulated classes.
However, they may not define other parts of the behavioral variables or relations.

2.4.2.2 Depends-on

The depends-on relation denotes exactly which classes use what information provided by other
classes. Classes may use each other only by using the terms defined on the class interface. A class X
uses a term T provided by class Y only if X employs term T in its definition. In this case, we say that
the definition of class X depends on class Y. For example, in Figure 2-4, the arrow labeled valve_open

Tank_
valve_cpen Interface

Valve_
Interface
Operator_
Interface

Figure 2-4. Graphic Depiction of the Depends-on Relation

denotes that the term valve_open is defined on the interface of class Valve_Interface and used in the
definitions of classes Tank_Interface and Operator_Interface.

Managing the depends-on relation is critical to accomplishing many packaging goals. For example,
how classes depend on each other determines which requirements changes will be difficult to make
and which will be relatively easy. If many classes depend on information that changes, then all those
class definitions may need to change as well.

213

2. The CoRE Models

2.4.23 Generalization/Specialization

The generalization/specialization structure is used to denote the inheritance relation. Inheritance is
a mechanism for specifying common properties among a set of classes. A superclass defines a set of
common properties and acts as a template for a class, much as the classes serve as templates for
objects. You may define one or more subclasses of a superclass. Objects of a subclass inherit the prop-
erties of the superclass plus additional properties defined by the subclass. These constructs are
defined as follows:

e Superclass: A superclass in CoRE defines a set of requirements or terms that is common to two
or more CoRE classes. A superclass is defined in exactly the same way as a class.

o Inheritance: Inheritance denotes the requirements or terms that are defined by a superclass
and shared among its subclasses. In CoRE, a class inherits the contents of its superclass by
encapsulating the definition of the superclass and using the superclass interface (i.c., the
superclass definition acts like an encapsulated class for each of its subclasses).

e Subclass: A subclass is a class that is defined as an instance of a superclass. In CoRE, a subclass

specializes the definition of its superclass by adding or constraining requirements. A class may
be a subclass of only one superclass.

A subclass inherits the properties of a superclass by using the terms and variables defined on the
superclass interface. A subclass of a superclass is constrained to use all the information defined on
the interface of the superclass in its definition but may add or constrain information.

You use CoRE'’s generalization/specialization structure both to reduce the redundancy in a
specification and to make commonality in requirements explicit. Where there are two or more classes
with many requirements in common, representing these requirements in a superclass reduces the
amount of specification that must be repeated. In addition, the use of a superclass makes explicit the
commonality between the subclasses, giving subsequent developers the opportunity to simplify the
design.

ExampLE: Part of an avionics system monitors and controls the aircraft’s communications
radios. The system contains two types of data entry terminals: one Radio Tune Control Panel
(RTCP) and two Command and Display Units (CDUs). Both units show the current state of
each of the aircraft’s six communication radios. The crew can also use either type of terminal
to select a given radio and enter a new frequency. Frequencies can be entered numerically by
giving an integer from 1 to 28 corresponding to a preset frequency or by entering a three-letter
preset mnemonic. The types of terminals differ in that only the CDUs can be used to enter a
mnemonic because only the CDUs have letters on their keypads. Otherwise, the requirements
for getting frequencies, selecting a radio, and displaying radio state are the same for the two
types of terminals.

The commonality in requirements for the terminals is an essential part of the problem in the
sense that the commonality is driven by common underlying requirements for controlling the
radios rather than being an incidental artifact of similar hardware. You can make such
commonality explicit and reduce redundancy in the specification by creating a Radio Terminal
superclass that encapsulates all the common requirements. You would then define a CDU
subclass that refines the Radio Terminal superclass by adding the requirements associated
with entering frequencies as mnemonics.

2-14

2. The CoRE Models

2.4.3 ALLOCATING THE BEHAVIORAL MODEL TO CLASSES

The class definitions, including the encapsulated information and the class interface, are constrained
by the behavioral model. In particular, all of the interface information provided by the classes must
be expressed in terms of the environmental variables. Thus, the class interfaces only provide
information in terms of the state of environmental variables, changes in their state, or the history of
such changes. This keeps the model consistent with CoRE’s goal of providing nonalgorithmic
specification.

Arepresentative allocation of elements of the behavioral model to a class structure is shown in Figure
2-5. While an actual specification will be much more complicated in terms of the number of classes,
levelsin the class hierarchies, and use of information, the complex structure is composed of many such
simple structures that are used repeatedly. When the basic structure is understood, it is not difficult
to read a CoRE specification.

Terms

Class Interface: Class Interface: Class Interface:

Monitored Variable Definition Term Definitions None
Term Definitions
Encapsulated: Encapsulated: Encapsulated:
Input Variable Definition Term Definitions Controlled Variable Definition
IN Relation Definition REQ Function
Tolerance
Allowed Delay
Output Variable Definition
OUT Relation Definition
Legend

O———Onependency (O controlied Varisbie

Figure 2-5. Canonical Allocation of Behavioral Model to Classes

In general, a class that defines a controlled variable defines the REQ relation for the variable. The
REQrelation is defined using terms defined by other classes in the requirements specification. Other
classes can define finite state machines (mode machine) or terms; both the modes and terms are them-
selves required to be functions of other modes, terms, or monitored variables. Thus, the internal
classes also use modes and terms defined by other classes. Classes that define monitored variables
provide the variable or terms to other classes.

The CoRE class model differs from others in that class interfaces are not defined in terms of
operations (also called methods, access programs, or functions) and object interactions are not

2-15

2. The CoRE Models

defined in terms of messages. Because CoRE is intended to specify only required behavior, not design,
CoRE uses specification techniques based on the behavioral model rather than programming (i.e.,
sets and relations rather than operations or procedures). You specify what information one class may
use about another but not the mechanism by which it will be used (i.e., the protocol or transfer
mechanism).

2-16

F’.m’a-rf“w"»" T e T e e

3. AN EXAMPLE: THE FUEL LEVEL MONITORING
SYSTEM

CoRE principles and heuristics are illustrated by applying them to a small real-time example called
the FLMS Specification. This section describes the FLMS system mission and requirements.

The FLMS is a simplified version of a safety shutdown system that is part of a shipboard fuel level
monitoring and control system. The overall system provides fuel to the engines and moves fuel be-
tween the shipboard tanks to ensure a constant supply and to help maintain trim. The safety shutdown
system is a separate component of the overall system that shuts down the fuel pumps under unsafe
conditions, such as too low or too high a fuel lex ¢l in a tank. The problem is simplified by allocating
a single tank and pair of pumps to the software (a similar system would monitor the other tank or en-
gine pairs). The example also assumes a relatively simple method of measuring the fuel level based
on differential pressure in the tank (i.e., you do not address issues like extreme roll or pitch t':at com-
plicate the measure of fuel level in a real shipboard system). The FLMS problem is based on a similar
problemby Van Shouwen (1990). Figure 3-1 shows a front view of an FLMS pump and tank. The prose
description of the FLMS problem is as follows.

The design of a fuel control system typically comprises automatic or manual control mechanisms
(engine and fuel-level control) and safety monitoring devices. The safety monitoring devices include:
fuel gauges and gauge cocks that convey the fuel level in the tank, fusible plugs or fuse alarms that alert
the operator when the fuel level is too low or too high, and fuel flow rate gauges and other gauges show-
ing the engine’s operating conditions. The FLMS is intended to replace or complement the
above-mentioned devices. It monitors and displays the fuel level in the tank and provides visible and
audible alarms for high and low fuel levels. With the currently selected hardware configuration, fuel
level is displayed in a window on a cathode-ray tube (CRT) display, two “annunciation” windows on
the CRT provide visible indication of exceeded fuel-level limits, and the computer’s speaker provides
the audible alarm.

In addition to annunciation windows and the alarm, the pumps are shut down under the following
conditions: (1) when the fuel level is too high because an overly high fuel level can cause pipeline rup-
ture; (2) when the fuel levelis toolow because an overlylow fuel level mayresult in the engine running
dry and being damaged; and (3) when the monitoring system detects that it is unable to determine the
fuel level due to the failure of a sensor. Itis assumed that the shutdown mechanism is relay operated.
Hence, the FLMS outputs a single signal when the pumps are to be shut down.

The FLMS provides two push buttons that are used for the following purposes: (1) the button labeled
SELF TEST allows the operator to check the FLMS'’s output hardware while the system is shut down;
and (2) the button labeled RESET allows the system to be brought back into normal operation
following a shutdown or testing as long as the fuel level is within a specified range.

31

1

The Fuel Level Monitoring Sysiem

3. An Example

™\)

([

Fuel flow

to engine

30.4cm

Source: Adapted from Van Shouwen (1990)

g System Pump and Tank Configuration (Front View)

onitorin;

Figure 3-1. Fuel Level M

32

4. REPRESENTING THE CoRE BEHAVIORAL
MODEL

This section describes the underlying concepts of the CoRE behavioral model and presents the syntax
and semantics of the notation used to represent the model. It also defines CoRE’s approach to specify-
ing timing and accuracy constraints. Chapters 8 and 10 describe how and when the concepts and
notations are applied to develop a CoRE specification.

The behavioral model captures the software’s required behavior, including the required values of the
controlled variables, the timing constraints, the modes of the system, and the conditions and events
that cause modes to change. As discussed in Section 2.3, the CoRE behavioral model captures re-
quired behavior in terms of the relationship between monitored and controlled quantities over time.
The behavioral model captures the value and timing requirements using two complementary views:
(1) the functional view captures the software behavioral requirements as a set of functions, i.e., what
values the software must produce; and (2) the dynamic view captures required timing behavior and
scheduling characteristics, i.e., when the software must initiate and complete the required behavior.

CoRE's functional view is based on the four-variable model (Parnas and Madey 1990). To capture the
relations of the four-variable model, CoRE uses the following:

¢ Conditions characterize the state of the monitored or controlled variables.
* Events characterize changes in the state of environmental variables.
* Mode machines (a form of finite state machine) characterize the history of events.

* Functions define the required values of controlled variables in terms of conditions, events,
modes, and terms (expressions of monitored variables).

¢ Tolerances define the range of acceptable behaviors.

The relation REQ maps every possible value of the monitored variables to acceptable values of the
controlled variables. To make the specification of REQ readable, CoORE decomposes the relation into
parts. In particular, there is a set of functions associated with each controlled variable:

¢ Theideal value function maps each value of the monitored variables in its domain to an ideal value
of the controlled variable.

¢ The tolerance function defines the acceptable range of behaviors for every possible value of
the monitored variables.

¢ The timing constraints define the acceptable range of behavior in time (€.g., acceptable delay)
for all possible values of the monitored variables. This is captured as part of the dynamic view.

41

4. Representing the CoRE Behavioral Model

Where the value of a controlled variable depends on the history of events, the controlled variable
function is written in terms of modes. A given set of modes may be used to define many controlled
variable functions. Thus, the functions and modes associated with one controlled variable define one
part of the REQ relation for all the values of the monitored variables that determine the value of that
controlled variable. The union of all of the controlled variable functions and modes then defines the
entire REQ relation. For convenience in the following sections, the part of the REQ relation
associated with a single controlled variable is described as the REQ relation for that variable.

The CoRE functional view is illustrated in Figure 4-1. The arrows show where one part of the
representation uses another. The required values of the controlled variables are written as a set of
functions in terms of the modes, monitored variables, and terms. The mode machines change mode
based on events defined as changes in the values of the monitored variables.

\ /

IN Relation \\ Out Relation /

Condition \ DiffPress= Eveat Acti /
LCB<FuelLevel <UCBMN FuelLovel-offset/scale?255 @T(char=bel)| Low. on
FuelLevel<LCB 0 N\ @T(duration>0.5s)] Low. =pir
FuelLevel>LCB 255] , /

/ Output Variable

Input Variable / ' /

Acronym; DiffPress

Hardware: Differential Pressure Unit w.ﬂmmlb.oﬂw

Characteristics of Value: {0..255)

Data Transfex: ADC(0) nmxmmhﬂm: Bit S of Byte

Data Representation: 8-bit unsigned

Figure 4-1. Representation of CoRE’s Functional View

As for REQ, the remaining relations of the four-variable model, NAT, IN, and OUT are decomposed
for readability and specified in parts. The NAT relation is decomposed and specified along with the
relevant controlled variable functions or environmental variables. The IN and OUT relations are de-
composed so that the part of the IN relation associated with a particular monitored variable is defined
with that variable. Similarly, the part of the OUT relation for a controlled variable is defined with that
variable. This is discussed further in Section 11.

42

4. Represeating the CoRE Behavioral Model

CoRE’s dynamic view defines the required behavior in time. You capture the dynamic requirements
by specifying the scheduling and timing behavior relative to controlled variables. In particular:

¢ Define the scheduling requirement for each controlled variable function. Specify whether the
value must be set periodically or on demand.

* Define the tolerance in time, such as the maximum delay allowed to set or update a controlled
variable.

CoRE provides notations for representing each part, both the functional and dynamic views. The
following sections introduce the notation and semantics for each of these components in turn.

4.1 REPRESENTING THE FUNCTIONAL VIEW

The functional view specifies the required behavior of the controlled variables as functions of the
monitored variables. This section describes the notation and semantics of each of the elements used
torepresent the functional view, including monitored and controlled variables, conditions, events, and
terms. It also provides a set of tabular representations for CoRE functions: condition tables, event
tables, and selector tables.

4.1.1 MONITORED AND CONTROLLED VARIABLES

CoRE models the environmental quantities of interest with monitored and controlled variables. The
template for defining a monitored or controlled variable is shown in Table 4-1.

Table 4-1. Template for Monitored and Controlled Variable Definitions

Name Type Values Physical Interpretation
Variable name Variable type Possible values Description of the quantity modeled by the

of the variable. variable.

* Type. Specification of the units of measurement for the variable (e.g., feet, pounds per square
inch, degrees). For enumerated types, us¢ ENUMERATED. For Boolean types, use
BOOLEAN. You may also define types as needed.

* Values. The range and precision of the values that environmental variables can assume in
value. For enumerated variables, list the values. For numeric variables, record the lowest and
highest values the variable can assume. The precision can be given as a decimal with the value
(e.g., 0.02) or separately. This specifies the precision and the range of values over which the
software is required to be able to track a monitored variable or set a controlled variable.

» Physical Interpretation. A description of the relationship between the monitored or controlled
variable and the quantity that the variable models. The physical interpretation relates the
quantities used to write the specification to externally visible phenomena.

4.1.2 CoNDITIONS

In CoRE, the information that characterizes the environmental state and state changes is recorded
using a language of events and conditions. A condition is a predicate (i.e., a statement that is true or

43

4. Representing the CoRE Behavioral Mode!

false) about the values of environmental variables that holds for a continuous, measurable period of
time. A condition characterizes an aspect of the environmental or system state. For example, if alti-
tude is a monitored variable, mon_Altitude > 500 feet is a condition that is true or false for an aircraft
at any given time.

A condition is represented by a Boolean expression. Compound conditions are formed by connecting
two or more conditions using the logical operators AND, OR, and NOT. For example, given the
conditions C, C,, and C,, the following are compound conditions:

Compound condition: Is true when:

NoT C Cis not true

C; AND Gy Both C; and C; are true
Ci10rRC; C; or C;or both are true

The operations are listed in the descending order of precedence. You can use parentheses to alter the
evaluation order. By definition, each compound condition is also a condition.

4.1.3 EVENTS AND EVENT EXPRESSIONS

4.1.3.1 Definitions

An event occurs when a condition changes value. Hence, any condition has two kinds of events
associated with it; those events that occur precisely when the condition changes from false to true and
those that occur when the condition changes from true to false. An event occurrence is a moment in
time when a condition’s value changes. Each event occurrence is instantaneous (takes zero time) and
atomic (all or none occurs).

Event expressions are used to represent the set of events associated with a particular condition. CORE
uses the notations @T(C) and @F(C) to represent event expressions denoting changes in the state
of a condition C. An event denoted by @T(C) occurs at any moment in time when the condition C
transitions from false to true (Boolean expression evaluates to true). Similarly, @F(C) signifies any
event of the condition C becoming false.

For example, consider the monitored variable mon_Push_Button, representing the state of a push
button. At any moment in time, the button is in one of the two possible states: pressed or released.
The following event expressions denote the events corresponding to changes in the state of the button:

Eveiit expression: Represents:

@T(mon_Push_Button = pressed) The event class corresponding to a change in
the state of the button from released to pressed

@F(mon_Push_Button = pressed) The event class corresponding to a change in
the state of the button from pressed to released

Where the occurrence of an event depends on the truth or falsehood of other conditions, CORE
provides the notation @T(C;) WHEN C; This event occurs at any instant in time when C; transitions
from false to true while (given that) C; is true at the same time.

For example, the expression @T(mon_Reset_Switch = pressed) WHEN term_Fuel_Level_Range
= withinlimits represents the event of the variable mon_Reset_Switch changing value to pressed
while the variable term_Fuel_Level_Range has the value withinlimits.

4. Represcating the CoRE Behavioral Model

Compound event expressions are formed by connecting two or more event expressions with the
operator OR. Note the difference between @T(C; or C;) and @T(Cy) or @T(C3):

* The event @T(C; OR C;) occurs when the disjunction C; OR Cz changes value from false to
true. This occurs when one condition becomes true at a time when both were false. It does not
occur if one condition becomes true while the other condition is already true.

* The event @T(C,) OR @T(C;) occurs when either event occurs.

4.13.2 Implementation Considerations

The above definitions of conditions and event expressions represent an ideal view in the sense that
the definitions abstract from the practical issues involved with evaluating conditions and detecting
events occurring in real-time. For example, it is possible for two or more occurrences of an event to
happen so closely together in time that the software cannot distinguish them as discrete events.
Similarly, a condition may be true for such a short interval that this is missed by the software.

Where these concerns are an issue, the specification must describe the tolerances in behavior; i.e., the
minimum interval over which events will be detected. You use the NAT relation to record properties
of the environment, such as the minimum possible interval between events. CoRE does not provide
any additional notation to specify the tolerance in evaluating conditions or event expressions so any
such specifications must be provided in the commentary. For example, you should specify the order
of evaluation in the following cases.

1. Consider the evaluation of @T(C;) WHEN C, where the same external stimulus causes
@F(Cy) t> occur shortly after @T(Cy); i.c., the same external stimulus causes the value of
condition C; to change from true to false shortly after @T(C;) takes place. In this case, the
implementation must use the value of Cp, obtained most recently before the occurrence of the

event @T(C,).

2. Consider the case where the condition C; is only defined (becomes accessible) after the event
@T(Cy) occurs. In this case, the specification must clearly state that C; be tested only after
the event @T(C;) occurs.

3. Consider the case of two external stimuli S; and S, both causing the event @T(C,) to occur
so that Sz changes the value of C, from true to false or from false to true while S; has no impact
on C;. If both stimuli should arrive nearly simultaneously and there is a requirement for han-
dling S; before S,, then condition C; must be checked both before and after evaluating
@T(Cy.

In general, the specification should state the sequencing and timing of event detection and specify the
order in which the conditions in an event expression must be evaluated if the correct behavior depends
on it.

4.1.4 TERMS

The definition of several controlled variable functions may depend on expressions of monitored
variables. Rewriting the same expression throughout the specification can be tedious and error prone.
To simplify the specification and to note such dependencies explicitly, CoRE provides terms. A term

4-5

4. Representing the CoRE Behavioral Model

is a named expression of one or more monitored variables, i.¢., a formula that defines the computation
of a value using one or more monitored variables to which you have assigned a name. Each term has
a value and a type that is determined by the type of its constituent monitored variables and the

operators applied.

Using terms, you can abbreviate or replace lengthy expressions with names. The notion of terms in
CoRE is analogous to the concept of language macros (textual replacements) in some programming
languages. Here are the most common reasons for defining terms:

¢ o shorten a complex and lengthy event expression used in one or more cvent tables or a
compound condition used in one or more condition tables. The use of properly defined terms
reduces errors of inconsistency and improves the clarity of the representations.

¢ Toabstract a complex expression and hide its details. The reason may be that you have not yet
finalized the details or you might want to change them later.

4.1.5 CAPTURING STATE HiISTORY

For most real-time embedded systems, the software’s behavior depends not only on the current values
of the environmental variables but on how those values have changed over time (i.c., the history of
events). For example, to release a weapon, the pilot must select the weapon, arm the weapon, aim the
weapon, pull the trigger, in sequence, before the software actually releases the weapon. In CoRE, the
term state is used to refer to the set of values of the environmental variables at a given time. The state
history refers to how those values have changed over time. Thus, the required behavior of a system
is usually a function of both the current state and the state history. CoRE captures such environmental
variable state history using a form of finite state machine called a mode machine.

The following discussion assumes that the reader is familiar with the basic concepts of finite state
automatons and their representation as state transition diagrams and decision tables.

4.1.5.1 Modes and Mode Machines

A mode machine definition consists of:
* A finite set of states called modes.
e A distinguished initial mode.

e A set of transition events—events that cause transitions from one mode to another. Mode
transitions are atomic and instantaneous (i.e., completed in zero time).

e A set of mode transitions. Each mode transition maps a mode and an event to a new mode.

A mode machine specializes the notion of a state machine, first, in that the behavior of the machine
must be defined entirely in terms of the CORE behavioral model and, second, in that a mode machine

“s

4. Represonting the CoRE Bebavioral Model

does not define “actions™¢. The modes of the mode machine are defined in terms of the states of CoRE
environmental variables, and the transition cvents are defined in terms of changes to the
environmental variables.

You define a mode machine using a form of state transition diagram called a mode transition diagram
or a form of state transition table called a mode transition table.

4.1.5.2 Mede Transitioa Diagram

A mode transition diagram provides a graphic representation of a mode machine from the following
components:

e Modes are represented by rectangular boxes containing the names of the modes they
represent.

e Mode transitions are represented by lines with arrowheads showing the direction of the transition.

¢ Transition events are represented by event expressions labeling the transition arcs where the
event causes a transition.

The initial mode is distinguished by a mode transition terminating in the initial mode with no source.

Figure 4-2 shows a simple mode transition diagram. The initial mode is mode_Shutdown. There is a tran-

sition from mode_Shutdown to mode_Operating on occurrence of event_Reset. The mode machine

transitions from mode_Operating to mode_Hazard when the condition term_Fuel_Level Range =

withinlimits becomes false. It transitions back to mode_Operating from mode_Hazard if the event
@T(term_Fuel_Level Range = withinlimits) WHEN (NOT term_Sefftest) occurs.

@T(term_Fuel_Level Range = withinlimits
mode_Operating mode_Hazard

@F(term_Fuel_Level_Range = withinlimits)

@T(term_Timeout)
WHEN (term_Valve_Open)

mode_Shutdown /

Figure 4-2. Example of a Mode Transition Diagram
4.1.5.3 Mode Transition Tables

A mode transition table provides a tabular representation of a mode machine. Table 4-2 represents
the same mode machine as shown in the mode transition diagram in Figure 4-2. A mode transition
table has the following form:

4. Inmany methods, fmite state machines are used as finite controls where the machine performs specific actions or executes
functions; e.g., the form of finite state machine used Real-Time Structured Analysis as described in Hatley and Pirbhai
(1988). In CoRE, the machines are used only to capture state information. That state information is then used to specify
the CoRE relations.

4-7

4. Representing the CoRE Behavioral Model

* The current mode is listed on the left side under the column heading Current Mode. Every
mode of the machine must appear once.

¢ The set of possible conditions and events causing a mode transition is listed, one per column
in the center of the table.

* The set of modes the machine can transition to from each current mode is listed on the right
side of the table under the heading New Mode.

Table 4-2. Using a Table to Represent the Mode Machine In_Operation

Range = withinlimits

Reset
term_Fuel_Level
Opea

term_Timeout
term_Selftest
term_Valve_

1 1 1 |
Current Mode g v New Mode
mode_Operating @F mode_Hazard
mode_Hazard @T f mode_Operating
@T t mode_Shutdown
mode_Shutdown @T mode_Operating

Each row in the table specifies an event that will trigger a transition from the current mode to the new mode:

* A table entry of @T under a condition heading C denotes @T(C) and implies that the
triggering event occurs when the condition C changes from false to true.

* An entry of @F denotes @F(C) and implies that the triggering event occurs when the
condition C changes from true to false.

* The lower-case entries t and f correspond to the WHEN clause and signify that the condition
must have a particular value when the event occurs. For example, an entry of t with a column
heading Y means WHEN(Y), and an entry of f means WHEN(NOT Y). There may be two
or more t or f entries on each row; in this case, the WHEN clause condition is the conjunction
of the corresponding conditions. If a condition does not affect a particular mode transition,
then the corresponding box is blank.

For example, there is a transition from mode_Hazard to mode_Operating when the event
@T(Fuel_Level Range = withinlimits) WHEN (NOT term_Selftest) occurs as shown by the @T under
the condition (Fuel_Level Range = withinlimits and the t under term_Selftest in the row linking
mode_Hazard and mode_Operating.

4. Represeatiag the CoRE Behavioral Moddd

4.1.5.4 Properties of Mode Machines

A mode machine must be defined so that the machine is in only one mode at any given time. This
means that it will always make sense to talk about the current mode of the machine. CoRE provides
standard notation for referring to the current mode of a machine and the events associated with
entering and exiting a given mode.

For each mode M of a given mode machine C, there are two related events, denoted by ENTERED(C,
M) and EXITED(C, M), occurring exactly when the mode machine C enters and exits mode M,
respectively. You can use these predefined events as event expressions.

CoRE also provides the predefined condition INMODE(C, M) to refer to the current mode. The
condition INMODE(C, M) evaluates to true if mode machine C is currently in mode M; it evaluates
to false, otherwise. Where there is only one mode machine or where the context is well defined (e.g.
in condition or event tables), the parameters of INMODE may be omitted. Figure 4-3 illustrates the
relationship between the predefined events ENTERED(C, M) and EXITED(C, M) and the
predefined condition INMODE(C, M) for a given machine C:

Event: Occurs When: Meaning:

ENTERED(M) @T(INMODE(M)) Mode M is entered

EXITED(M) @F(INMODE(M)) Mode M is exited
ENTERED(M) EXITED(M;) ENTERED(My) EXITED(M2)

| \/ "
2
\\\\ R\vﬁ’ % ,i):ff;»cf 7

Figure 4-3. The Semantics of INMODE, EXITED, and ENTERED

Timeline

Any number of mode machines may be used to capture distinct aspects of the software behavior. A
CoRE specification, therefore, may include a set of concurrent mode machines. Mode transitions in
one mode machine may be used as transition events in another mode machine.

4.1.6 TABULAR REPRESENTATION OF FUNCTIONS

CoRE provides three types of tables for recording the information required to characterize the
controlled variable functions: condition tables, event tables, and selector tables. The CoRE tables pro-
vide a uniform, standardized organization for recording information and for promoting concisensss
and completeness in writing specifications.

49

4. Representing the CoRE Behavioral Model

4.1.6.1 Condition Table

A condition table is used to represent a function where the value of a variable is a function of the modes
and a set of mutually exclusive conditions. For example, use a condition table to specify the value
function for a periodic controlied variable (see Section 4.2.1).

Each row in the table specifies a mode or a group of modes and all the relevant conditions that affect
the value of the variable while in the mode. Table 4-3 illustrates the general format of a condition table.
The Expression in the bottom row specifies the value of the variable Vin mode M;, given that the condi-
tion Condition holds true. Thus, to determine the value of the variable for a given mode and condition,
(1) locate the row corresponding to the mode, (2) within the row, find the column corresponding to
the condition, and (3) follow the column to the bottom of the table to find the value of the controlled
variable. An X entry in the body of a condition table indicates that the expression at the bottom of the
column is not used to set the value of the controlled variable in the mode on that row.

Table 4-3. Format of a Condition Table

Mode Condition
Mode M; Condition; 1 .. Condition; »
Mode M, Conditiony, ; .. Conditionyy, ,,
Variable V.. Expressiony .. Expression,

Each condition table must satisfy the following criteria:

¢ The modes of a condition table must belong to the same mode machine; every mode in the
mode machine must appear only once in the table.

* The conditions in each row must be mutually exclusive.
* The disjunction of the conditions on each row must be true.
* The expressions specifying the value of the controlled variable must be of the appropriate type.

ExamrLE: The periodiccontrolled variable con_Altitude (Table 4-4) is set to Value, if condition
C, is true; it is set to Values if C, is true whenever the system is in mode M;. Whenever the
system is in mode Mj or M3, the controlled variable is always set to Values. In mode My,
con_Altitude is set to Value, if condition C. otherwise, it is set to Value,. Note that, in mode
M;, (C1 OR C;) must be always true and (Cy AND C;) must be false. This is the case because
the conditions in each row of a condition table must be mutually exclusive and their disjunction
must be always true.

4.1.6.2 Event Table

An event table is used to represent a function where the value of the variable must be set based on
the occurrence of an event. For example, the value function for a demand controlled variable is written
as an event table (see Section 4.2.2).

4-10

4mmucmswuou

Table 4-4. Example of a Condition Table

Mode Conditions
M, G C
M;
M3 INMODE X
M, C NOTC
con_Altitude = Value; - Value,

Each row in the table specifies a mode or a group of modes and all the events that cause the variable
to change value while in the mode. The entries in the body of the table are event expressions. At the
bottom of the table, there is an entry corresponding to each mode and event combination, defining
the value of the variable. An X entry in the body of the table indicates that the expression at the bottom
of that column is not used to set the value of the controlled variable in that mode. The table is arranged
so that all the events with a common variable expression are in the same column.

Table 4-5 illustrates the general format of an event table. The Expression in the bottom row specifies what
the value of the variable V is set to for a given mode M; and a triggering event EventExpression;;. Thus,
to determine the value of the variable for a given mode and event, (1) locate the row corresponding to
the mode, (2) within the row, find the column with the corresponding event, and (3) follow the column
to the bottom of the table to read the expression defining the variable value.

Table 4-5. Format of an Event Table

Mode Event
Mode M; EventExpression; ; .. EventExpression; ,
Mode M, EventExpression, ; . EventExpressiony, »
Variable V .. Expression; .. Expression,

Each event table must satisfy the following criteria:

* The modes of a condition table must belong to the same mode machine; every mode in the
mode machine must appear only once in the table.

¢ The triggering events in each row must be mutually exclusive; i.e., only one can occur at a time.
¢ The expressions specifying the value of the variable must be of the appropriate type.

ExadrLE: In Table 4-6, the controlled variable con_Switch is set to closed if, while in mode
M,, condition C changes from true to false. con_Switch is set to open if C4 changes from true
to false while in Mp; it is set to closed at entry to M3 if condition C, is true. The third row de-
fines a grouping of modes M3 and My. In this case, the controlled variable con_Switch is set
to open at entry to either of the two modes; however, exiting M3 and immediately entering My
is not counted as a new event occurrence; hence, con_Switch is not set to open again. Similar-
ly, it is set to closed when leaving either M3 or Mg but not entering the other one. The con-
trolled variable con_Switch is set to open on exiting Ms and is set to closed on entering Ms

4-11

4. Representing the CoRE Behavioral Model

if C, is true at the entry to this mode. Notice that the condition @F(INMODE(Ms)) is

equivalent to EXITED(Ms).
Table 4-6. Example of an Event Table

Mode Events

M; X @F(C)

Mz @F(C,) @T(INMODE AND C,)
(M3, My) ' ENTERED @F(INMODE)

Mg @F(INMODE) ENTERED when (C;)
con_Switch = open closed

4.1.6.3 Selector Table

A selector table is a tabular representation of strictly mode-dependent information. Each row of the
table corresponds to the modes of a mode machine that completely determines the information. The
columns provide the information that is relevant to each mode. Each column heading names a term
or controlled variable whose value is specified in that column. Each mode of the mode machine must
appear only once in the table. Each entry in the body of the table must depend entirely on the corre-
sponding mode. An X entry in the table indicates that the item named at the column heading is not
defined in that mode. Table 4-7 illustrates the general format of a selector table.

Use a selector table to specify a term, controlled variable function, or any quantity whose definition
is completely determined by an active mode.

Table 4-7. Format of a Selector Table

Name or Description of .o Name or Description of

Mode Mode-Dependent Entity Mode-Dependent Entity
Mode M; Expression; .. Expression;
Mode M, Expression,, . Expression,,

ExaqrLe: In the following example of a selector table (Table 4-8), the value of the term
term_Max_Level is 50 in mode_Operating and mode_Shutdown and 12 in mode_Failure.

Table 4-8. Example of a Selector Table

Mode term_Max_Level
mode_Operating
mode_Shutdown 50
mode_Failure 12

4.2 REPRESENTING THE DYNAMIC VIEW

The dynamic view of the CoRE behavioral model describes the timing characteristics and scheduling
requirements. It specifies when the activities described in the functional view must be initiated or

4-12

4. Represeating the CoRE Behavioral Model

completed. It also captu:es the scheduling characteristics (periodic or demand) of the system’s
required behavior. These timing requirements are defined in terms of the externally visible behavior
of the system. For example, the deadline for a controlled variable function is defined in terms of the
time from the occurrence of the external event to which the software responds by setting the value of
the controlled variable.

Scheduling requirements are classified as periodic or demand. Where a controlled variable has a
periodic scheduling requirement, its value must be set at regular fixed time intervals; i.e., the initiating
event for setting its value is the passing of a certain amount of clock time. Where a controlled variable
has a demand scheduling requirement, its value must be set upon the occurrence of a sporadic event
(e.g., button pressed, mode changed, etc.).

4.2.1 PERIODIC SCHEDULING

A controlled variable is considered periodic if it must be set or updated at fixed, regular real-time
intervals. For example, a value that must be supplied as part of a feedback control loop every 200
milliseconds has a periodic scheduling constraint.

To express the timing characteristics and scheduling requirements of controlled variables, you must
define the following parameters:

¢ Period. The period parameter (P) specifies a constant time interval at which the controlled
variable value is set or updated. This represents the time between two consecutive periodic
cycles for setting the controlled variable.

o Initiation Delay. The initiation delay parameter (I) specifies the length of the time between the
start of any periodic cycle and the earliest time the system is allowed to update the controlled
variable. Only after this period is elapsed may the software set the controlled variable.

This is an optional parameter with a default value of zero. Where the initiation delay is zero,
the controlled variable may be set immediately.

o Completion Deadline. The completion deadline parameter (d) specifies the time by which the
controlled variable must be set or updated during any periodic cycle.

This is an optional parameter with a default deadline at the end of the period. Where the
deadline is earlier, you must specify the deadline parameter.

o Initiation and Termination Events. Some periodic controlled variables are set only under certain
conditions, e.g., when the system enters or is in a particular mode. Use the initiation and termi-
nation parameters to specify the events that signal when the controlled variable must be peri-
odically updated. Where the initiation and termination events are specified, the requirement
is that the controlled variable must be updated periodically at fixed time intervals during the
period between the arrivals of the initiating and terminating events, respectively. For a con-
trolled variable process that runs continuously, you only provide the initiating event (e.g.,
system initialization).

The timing characteristics of a periodic controlled variable may vary as a function of the mode, in
which case its scheduling parameters will also be functions of the mode. Usually, these parameters
are constant quantities.

4-13

4. Representin;; the CoRE Behavioral Model

Figure 4-4 depicts the relationship between the periodic scheduling parameters. Note that it must be
the case that I< d<P.

. itk periodic
it periodic
::ydesum cycle ends

1 d
(initiation delay) (completion deadline)
| ' J
controlled variable is set during this interval

Figure 4-4. Time Line for Periodic Controlled Variable Process

4.2.2 DEMAND SCHEDULING

A controlled variable is considered demand if it must be set in response to sporadic events. For
example, a controlled variable that must be set when a button is pressed or a mode change occurs has
a demand scheduling constraint.

To express the timing characteristics and scheduling requirements of demand REQ relations, you
specify the following parameters if applicable:

o Initiation Delay. The initiation delay parameter (I) specifies the length of the time between the
detection of the initiating event and the earliest time the software is allowed to update the con-
trolled variable. Only after this period is elapsed may the software set the controlled variable.

This is an optional parameter with a default value of zero. Where the initiation delay is zero,
the controlled variable process can be set immediately upon detecting the initiating event.

e Completion Deadline. The completion deadline parameter (d) specifies the time, measured
from the occurrence of an initiating event, by which the controlled variable must be set. It rep-
resents the maximum acceptable time delay between the detection of an initiating event and
generation of the required system response (i.c., the worst-case response time).

The ability of the software to respond to initiating events depends on how closely together such events
can occur in time. Where events can occur closely enough for this to be an issue, the NAT relation
should specify the minimum interval between events. The specification of the controlled variable must
discuss the acceptable tolerance in behavior (i.e., if events can be missed).

Figure 4-5 depicts the relationship among the demand scheduling parameters.
Occasionally, the timing characteristics of a demand controlled variable may vary as a function of the

mode, in which case its scheduling parameters will also be functions of the mode. Usually, the
scheduling parameters are constant quantities.

4-14

I d _
(initistion delay) (completion deadline)
L]

Controlled variable is set in this time interval
Figure 4-5. Time Line for Demand Coatrolled Variable Process

4.3 SPECIFYING REQ, NAT, AND UNDESIRED EVENTS

This section gives an overview of how the components discussed in this section are combined to specify
the behavior of a controlled variable.

4.3.1 SPECIFYING CONTROLLED VARIABLE BEHAVIOR

Table 4-9 shows the template for specifying a controlled variable with periodic scheduling constraints.
Table 4-10 shows the template for specifying a controlled variable with demand scheduling constraints.

Table 4-9. Template for a Controlled Variable with Periodic Scheduling Constraints

Section Title Brief Description
Controlled Name of the controlled variable
Variable
Initial Value Expression or table giving the initial value of the controlled variable
Mode Class Names of the mode classes in the domain of the controlled variable
Sustaining Conditions that must hold for the value function to be defined
| Conditions
| Value Function | Function specifying the ideal values of the controlled variable
Tolerance Expression or table giving the allowed deviation from the ideal values defined by the
value function
NAT Constraints | Description of any NAT constraints on the controlled variable behavior
Period Expression giving the period of the controlled variable function
Initiation Delay | Expression giving the allowed initiation delay
Completion Expression giving the allowed deadline (worst-case response time)
Deadline
Initiation and Event expressions or table giving the initiating and terminating events for the periodic
Termination function
Comments Additional comments or descriptive material

For each controlled variable, you must define a complete mapping from the possible states of the
monitored variables to the possible states of the controlled variable. You must also define the timing

415

4. Representing the CoRE Behavioral Model

and scheduling constraints. The templates in Tables 4-9 and 4-10 show all of the components of such
a specification for controlled variables with periodic and demand timing constraints, respectively.

For both types of variables, you must define the initial value and identify the modes for which the
variable is a function. The ideal value of a periodic variable is defined using a conditional expression
if simple enough or as a condition table if the variable is a function of modes. A demand variable is
defined using an event expression or an event table if it is a function of the modes. The sustaining
conditions identify any conditions that must be true for the function to be evaluated; i.e., it identifies
any conditions that must be true for the function to be defined and the conditions to be evaluated.

You define the range of acceptable values by defining the tolerance. The tolerance is specified only
for numeric values. You use a constant, expression, or condition table to define the acceptable range
of values. '

To specify any relevant parts of NAT, you use the same components used to specify parts of the REQ
reflation. The remaining parameters are used to specify the scheduling constraints and tolerance in
time. Here, as well, you may use condition tables, event tables, expressions, and so on to describe the
required behavior. For example, if the initiating and terminating events of a periodic variable depend
on the mode, use an event table to identify the events that initiate or terminate the periodic behavior
in each mode.

Table 4-10. Template for a Controlled Variable With Demand Scheduling Constraints

Section Title Brief Description

Controlled Name of the controlled variable

Variable

Initial Value Expression or table giving the initial value of the controlled variable

Mode Class Names of the mode classes in the domain of the controlled variable

Sustaining Conditions that must hold for the value function to be defined

Conditions

Value Function | Function specifying the ideal values of the controlled variable; typically given as an
event table

Tolerance Expression or table giving the allowed deviation from the ideal values defined by the
value function

NAT Constraints | Description of any NAT constraints on the controlled variable behavior

Initiation Delay | Expression giving the allowed initiation delay

Completion Expression giving the allowed deadline (worst-case response time)

Deadline

Comments Additional comments or descriptive material

4.3.2 SPECIFYING NAT RELATIONS

Use the NAT relation to derive the types and ranges of the monitored variables and the bounds on
the REQrelation. The NAT relation defines all the values that the monitored and controlled variables
can assume as well as any constraints imposed on them by the physical world; e.g., it may not be
possible to close a valve (the controlled quantity) at certain tank pressures (the monitored quantity).

4-16

4. Represeating the CoRE Behavioral Model

As you identify and define each of the monitored and controlled variables, you will specify its type,
precision, minimum and maximum values, maximum rate of change, and so on depending on how the
quantity will be used. These values are typically bounded due to environmental constraints that are
totally outside the control of the software. For example, if the system must monitor an aircraft’s alti-
tude, the aircraft’s operational ceiling determines its maximum value, the earth’s surface determines
its least value, and so on. These environmental constraints determine the useful bounds on the envi-
ronmental quantities; the software may require less. For example, there are altitudes that an aircraft
will never reach.

Use the NAT relation to specify the bounding assumptions on the monitored and controlled variables.
You then use this information to define the ranges over which the software must monitor the quantities
it tracks or must affect those it controls. Thus, NAT is typically used to derive the characteristics of
the monitored and controlled variables, e.g., the type, maximum and minimum values, or maximum
rate of change.

NAT plays a similar role in the definition of the REQ relation when the function describing REQ must
cover all the possible values of the monitored and controlled variables. Use the NAT relation to cap-
ture any constraints on the possible relationships between a controlled variable and the monitored
variables that determine its values. For example, when the possible relationships between the moni-
tored and controlled variables are constrained, €.g., when there are some values of the controlled vari-
able that cannot occur for certain monitored values, this must be captured in the NAT relation. This
allows the reader to determine that the REQ relation covers all the possible values of the monitored
and controlled quantities (i.e., it is complete).

You use the same basic components, i.c., mathematical expressions, conditions, events, condition
tables and so on, to specify NAT as you do to specify REQ. You may also use illustrations or even prose
if the constraints cannot be captured more rigorously.

4.3.3 SPECIFYING REQUIRED RESPONSES TO UNDESIRED EVENTS

Over its operational life. any real-time embedded system will experience undesired events, the failure
of components of the sy. tmor of the system itself. Sensors fail to provide inputs or are used in operat-
ing conditions that affect the accuracy of the inputs they provide. Software databases become cor-
rupted, leading them to provide inconsistent data. Actuators fail to respond to commands or their
performance degrades. The communication lines connecting devices fail. These failures may be
temporary or permanent.

When specifying a system, engineers must consider and account for undesired events that the system
is likely to encounter. The requirements specification must describe the required behavior of the
software when it encounters these undesired events.

CoRE treats the response to undesired events just as it treats other requirements; i.c., the software’s
response to undesired events must be specified by the REQ. However, you will occasionally create
additional monitored variables specifically to denote failure conditions; in particular, you may create
them to model the inability of the software to get the value of a monitored variable or set a controlled
one.

These additional monitored variables are used in the REQ relation to specify required system
behavior on the occurrence of undesired events, e.g., to trigger mode changes or determine the value

417

4. Representing the CoRE Behavioral Model

of a controlled variable. These monitored variables abstract from the system components, i.c., they
do not unnecessarily assume or preclude particular system components or a particular system design.
They are defined in terms of the inability of the system to measure a monitored variable or measure
it to the desired precision or in terms of the inability of the system to affect the controlled variable or
to affect it to the desired tolerance.

4-18

5. REPRESENTING THE CoRE CLASS MODEL

This section describes the underlying concepts, syntax, and semantics for representing the CoRE class
model. The class model provides the set of facilities for packaging the behavioral model as a set of
classes and dependencies. You will use the concepts and notations described in this section to develop
and document a class structure for your software requirements. A class structure represents the set
of classes and relationships for a given CoRE specification. The process, guidelines, and heuristics for
applying the class notation to package the behavioral requirements are described in Section 9.

The goal in creating a class structure is to package the behavioral model to facilitate ease of change,
create reusable requirements, and develop parts of the software in parallel. To achieve these goals,
you use the concepts of abstraction and encapsulation in decomposing the requirements into a class
structure. You decompose the behavioral model into a set of classes, each of which may be refined
independently. The process of decomposing requirements allows you to analyze and understand large,
complex systems. With CoRE, decomposition is based not on algorithmic decomposition (€.g., steps
taken to process an input) but rather on the behavioral model (e.g., monitored and controlled
quantities, software modes, and terms).

The class model contains classes with well-defined interfaces and dependencies on these interfaces.
The class model provides the mechanisms to:

e Manage requirements changes (via abstraction, encapsulation, and inheritance).
¢ Create reusable requirements (via abstraction, encapsulation, and inheritance).
* Develop parts of the software system in parallel (via classes and their dependencies).

The CoRE class model provides the mechanisms to package the behavioral model as a set of classes,
objects, and dependencies. The sections that follow tell you :

e The mechanism for gaining a preliminary understanding of the software and its environment
(recorded in an information model)

e What information to record about each class (class definitions, interfaces, encapsulated
information)

¢ The diagraming notation for showing a class structure (context diagram and dependency graphs)

¢ The information and diagraming notation for each component of a class definition

5.1 INFORMATION MODEL

The CoRE information model serves a different purpose than a traditional data model (e.g., those
used to specify complex data requirements as outlined by Chen [1976]) in that you use the information

5-1

3. Representing the CoRE Class Model

model to identify, collect, and organize the information you will need for subsequent CoRE activities. You
use an information model to obtain a preliminary understanding of the software’s environment. This in-
cludes entities whose behavior can affect the software behavior, characteristics of these entities (physical
quantities that the software monitors and controls), and the relationships among instances of these
eatities.

You can use the information model in building both the CoRE behavioral model and class model.
First, the physical quantities that you identify help in determining the environmental variables and
the associations that must be maintained by the REQ or NAT relation in the behavioral model. Se-
cond, identifying entities and capturing similarities among entities aid in identifying classes and the
inheritance relation in the class model.

An entity is a representation of any aspect of the system environment that is of interest to the system.
Entities in the information model describe physical things, roles played by persons or organizations, inci-

dents, and interactions that are significant to the software. For each entity, you record the information
found in Thble 5-1.

Thble 5-1. Entity Template

Section Title Brief Description
Entity Name The name of the entity
Entity Description Brief prose description of what the entity represents
Attributes List of attributes that characterize the entity
Instances List of number of instances that you have identified

Anattribute characterizes some important aspect or fact about an entity. Consider physical quantities that
may be relevant to the software. The software may monitor or control these quantities, or their values may
influence quantities that the software monitors or controls. Provide a definition for each attribute that
describes the association between the physical quantity and the attribute that denotes it. Figure 5-1 shows
an example of the entity Pump and its attributes from the FLMS.

o ShutdownRelay
| > Power

Figure 5-1. Pump Entity and Attributes Example

You impose organization on the entities by creating relationships between entities. The relationships
you create are the generalization/specialization (see Section 5.1.1), aggregation (see Section 5.1.2),
and application-specific (see Section 5.1.3) relationships.

There are a variety of notations you can use to represent a CoRE information model, e.g., an
entity-relationship diagram (ERD) (see Figure 5-2), a text-based list of candidate environmental
variables, or an attribute matrix (see Table 5-2).

* ERD:Usethe ERD to create a graphic representation of entities and relations. The ERD uses
rectangles for entities and diamonds for relationships with lines connecting related entities.
Attributes of entities are shown as text within the entity symbols.

52

| Figure 5-2. Entity-Relationship Diagram Notation
o Anribute Matrix: You can represent relations between entities using a table that maps
attributes to attributes. Place the attribute names in the first column and first row. Place an

X in the intersection for pairs of attributes in which the value of one determines, prescribes,
or constrains the value of the other.

Thble 5-2. Partial Attribute Matrix for Fuel Level Monitoring System

ShutdownRelay Power .. LevelDisplay
ShutdownRelay X
Power
LevelDisplay

5.1.1 GENERALIZATION/SPECIALIZATION RELATIONSHIP

The generalization/specialization relation recognizes that an entity may be related to a set of entities
bybeing a generalization of the entities in the set. Attributes that characterize the more general entity
also characterize the members of the set. The members of the set may specialize the general entity
by adding or constraining attributes and may inherit its attributes.

Use the generalization/specialization relation to record which entities inherit similar characteristics.
Recording this information will help you in subsequent class structuring activities to identify common
requirements and help you understand which changes are likely to occur together.

Represent the generalization/specialization relationship with anis_arelationship in an ERD. Capture
those attributes that are common among a set of entities with the is_a relationship and associate those
attributes with the generalization entity. An entity can have, at most, one generalization parent entity.
For example, consider an air traffic control system that tracks potential target aircraft in which host
and target aircraft are specializations of the aircraft entity (see Figure 5-3). The attribute Location
applies to both the Host and Target Aircraft entities; therefore, it is associated with the Aircraft entity
(generalization entity). However, the speed of the target aircraft (attribute Relative Speed) relative
to the host aircraft only applies to the Target Aircraft entity attribute; therefore, it is associated with
the Target Aircraft entity only.

5.1.2 AGGREGATION

The aggregation relation indicates that one or more entities are part of another entity. This
relationship allows you to represent entities as components of an entire assembly.

Use the aggregation relationship to help in understanding the software’s environment and also to
provide structure to the information model. There may be information or relationships that the
software must maintain that belong to the aggregate but not to any of the parts individually.

5-3

5. Representing the CoRE Class Model

Alrcralt
Location
] 1
Host | Target Alreratt
Alrcralt Relative Speed

Figure 5-3. Generalization/Specialization Entity-Relationship Diagram Notation

Represent the aggregation relationship with anis_part_of relation. For example, an operator console
that contains an alarm and display may need to ensure that, when an alarm is sounding, the display
must reflect the condition that the alarm is signaling (see Figure 5-4).

Console
Is_pert_
of
C 1
Alarm Display

5.1.3 APPLICATION-SPECIFIC RELATIONSHIP

An application-specific relationship represents a logical association between entities. A logical
association can be a physical or conceptual connection between entities. For example, a target aircraft
flies relative to a host aircraft. “Flies relative to” is the logical association between the two entities.

‘You use application-specific relationships to capture an early understanding of what information you
will need to write the REQ and NAT relations. The attributes of one entity may be needed to set the
attributes of another entity. These entities may be connected via a logical association.

You name the application-specific relationship using the terminology consistent with the software
application. Youcan re~ -¢nt the application-specific relationships using an ERD (see I »wure 5-5)
or an attribute matrix \sve Table 5-2). These associations should be named with a verb yhrsse.

5.2 CLASS DEFINITIONS

The CoRE class model provides a set of facilities for packaging the behavioral model into a structure
consisting of classes and their dependencies and the inheritance relation. A class serves as a template

Figure 5-5. Application-Specific Relationship Notation

for an object or a set of related objects. A class defines a set of requirements or terms common to one
or more objects and provides facilities for abstraction and encapsulation. An object is an instance of
a class that specifies a subset of the definition of REQ, NAT, IN, and OUT relations for a given specifi-
cation. A CoRE specification is written in terms of classes (not objects) to keep the specification
concise and to avoid redundancy.

Todefine a class, you need to identify its name, description, class interface, encapsulated information,
the name and number of objects defined by each class, and traceability information (see Table 5-3).
The definition partitions the information into what can be used by other classes (the class interface)
and what cannot be used by other classes (encapsulated information). How you represent each of
these characteristics is discussed in later sections.

To complete a class structure, you must also define and represent the relationships among classes.
These relationships are the encapsulates relation, depends-on relation, and the inheritance relation.
Section 2.4 showed that:

¢ The encapsulates relation allows you to define a class in terms of other classes.
¢ The depends-on relation denotes exactly which classes use information provided by other classes.

¢ The inheritance relation denotes a class containing common properties to be shared among
a set of classes.

The sections that follow show you how to represent a class structure graphically, including the set of
classes and the relationships among them.

Table 5-3. Class Template

Section Title Brief Description
Class Name Use a descriptive name (e.g., one recogmzable by the customer) to communicate the
class abstraction preceded with “class_” or “superclass_” (e.g., class_Alarm).
Class Description | Brief prose description of what the class encapsulates and the abstraction it provides.

Class Interface | Information that can be used by other classes in their definitions.
1. Names and definitions of monitored or controlled variables that the class defines.
Begin the monitored variable name with “mon_" (e.g., mon_Fuel_Level).

2. Names and definitions of terms that the class defines. Use a descriptive name
preceded with “erm_" (e.g.,, term_Inside_Hys Range).

3. Provide names and definitions of any events that the class defines. Use a descriptive
name preceded with “event_” (e.g., event_Reset).

4. Provide names and definitions of any modes that the class defines. Use a descriptive

name preceded with “mode_" (e.g., mode_Operating).

5-5

X Represeating the CoRE Class Model

Table 5-3, continued

Section Title Brief Description
Encapsulated Information that cannot be used by any other class:
Information 1. Names and definitions of monitored variables.
2. Names and definitions of controlled variables.
3. Names and definitions of events.
4. Names and definitions of terms.
5. Names and definitions of input and output variables.
6. Definitions of REQ relations.
7. Definitions of NAT relations.
8. Definitions of IN relations.
9. Definitions of OUT relations.
—“-
10. Names and definitions of classes and their dependencies if not a leaf class.
Objects Defined | List the name of each object derived from this dlass (e.g., Engine 1, Engine 2, Engine
3, and Engine 4 would be objects derived from class_Engine). Objects are derived only
from classes at the leaves of the hierarchy, so this section can be empty if the class is a
higher level class.
Subclasses If this template describes a superclass, list the subclasses derived from the superclass
Defined here.
Traceability Specify which requirements are defined by the dlass. This section is filled only for leaf
classes.

5.3 DIAGRAMING CONVENTIONS

Figure 5-6 illustrates the diagraming notation you use to show a class structure. The following sections
describe how the graphic elements are used to illustrate the relationship between the software and its
environment and the dependency relationships among classes.

5.3.1 CONTEXT DIAGRAM

The CoRE context diagram illustrates the boundaries between the software and the external
environment. Specifically, the CoRE context diagram shows the monitored and controlled variables
in and out of the software system unlike the information model, which implies no directional
information. The diagram identifies the entities and the environmental quantities needed by the

software.

5. Represcating the CoORE Class Model

Class]

MM mon_Varisble Name
Object <object name > Variable *

Controlled con_Variable Name
Subclass Identifier . Variable _—

name
Depends-on Relation ————»

Figure 5-6. Class Structuring Notation

The context diagram (see Figure 5-7) contains a circle that represents the CoRE specification as a
whole. You further decompose the software system class. Each rectangle represents an entity from the
information model. An arrow connecting a rectangle to the circle represents an environmental
variable. Label the arrow with the name of the environmental variable that it represents (e.g.,
mon_Variable_Name, con_Variable_Name).

mon_Varisble_Name [Softwarel con_Variable Name

\oren] 1

Figure 5-7. Representation of an Overview of a Specification Using a Context Diagram

Entity

Arrows representing monitored variables can originate only from an entity on the context diagram.
Likewise, the arrows for controlled variables can terminate only at an entity on the context diagram.
An arrow from a rectangle to the circle represents a monitored variable, and an arrow from the circle
to the rectangle represents a controlled variable. To reduce the number of arrows contained in a
context diagram, you can aggregate monitored variables originating from the same entity into a single
arrow. Similarly, you can aggregate controlled variables.

5.3.2 DEPENDENCY GRAPH

The depends-on relation denotes which classes use what information provided by other class
interfaces. Formally, the depends-on relation is defined as:

class_X uses T, where T can be a monitored variable, term, mode, or event, provided by class_Y
only if class_X employs T in its definition.

You show these relationships in a dependency graph. An arrow between two classes represents an
interface provided by the class at the tail of the arrow, which is needed to define the class at the head
of the arrow. Label each arrow with the name of the environmental variable, event, or term that it
represent: (see Figure 5-8).

In establishing the dependencies, it is important to remember that a dependency shows only that the
definition of a term defined by one class is used by another. It implies nothing about how the data may
appear in an implementation or how it actually moves from one place to another. In particular, it does
not imply that there is some form of “request” for the data followed by some form of “send.” CoORE
classes are not operational and do not perform actions like requesting and sending.

57

3. Representing the CoRE Class Model

Figure 5-8. Dependency Graph Notation

5.3.3 LEVELING

You represent the encapsulates and depends-on relations as a set of leveled diagrams. The root of the
hierarchy is the CoRE context diagram. Leveling allows you to decompose a class into more detailed
classes (encapsulates structure), providing a means to manage complexity in the detailed require-
ments. You could represent the leaves of the hierarchy as a single diagram; however, your ability to
understand the specification decreases due to the amount of information shown. The higher level
diagrams are abstractions of the lower level diagrams (see Figure 5-9).

Contes Disgra ... (ntity/

mon_a Com_ &
W

entity ~(P=2 ofErntin)

oz c coz &

Figure 5-9. Class Structuring Leveling Diagrams

5. Representing the CoRE Class Modsel

You also show the dependencies among classes at each level of the encapsulation structure.
Notationally, this means that dependencies into and out of a class on a parent diagram must be equiva-
lent to the dependencies into and out of a child diagram. This is referred to as balancing. In other
words, all dependencies into a child diagram must be drawn coming into the parent class. Similarly,
all dependencies out of a child diagram must be drawn going out of the parent class (see Figure 5-9).

The leveled set of diagrams represents the decomposition of the software system class on the context
diagram. All arrows representing the monitored variables come into the Level 0 diagram. Similarly,
all arrows representing the controlled variables exit the Level 0 diagram (see Figure 5-9).

5.4 CLASS SPECIFICATION

Table 5-3 defined the components of an individual class. This section expands on the definition of each
component as well as shows you how to graphically represent them. The definition partitions the infor-
mation into what can be used by other classes (the class interface) and what cannot be used by other
classes (encapsulated information). The inheritance relation is also discussed.

5.4.1 CLASS INTERFACE

A class interface defines information (e.g., monitored variables or expressions of monitored
variables) that can be used in the definition of other classes. A class interface is an abstraction in the
sense that it hides extraneous details and shows only essential aspects of the information defined by
the class. Equivalently, there is a one-to-many relationship between the interface and the possible in-
ternal structures. For a CoRE class, the abstract interface comprises the information defined by the
class that other classes can use.

In developing the class interface, you must seek a balance between sometimes conflicting goals:
providing a useful interface, preserving the encapsulated information of the class, and maintaining
ease of use:

*» Provide a useful interface. Your first objective is to provide sufficient information about each
monitored variable so that you can fully specify the REQ relations that depend on those
variables.

» Preserve the encapsulated information. The class encapsulated information characterizes
information that other classes should not depend on. You must define an interface that does
not provide information that is part of the class encapsulated information.

* Maintain ease of use. In developing the class interface, you create information to be used in
other parts of the requirements. Your objective is to define the interface terms so their
meaning is clear, precise, as simple as possible, and unambiguous.

The actual information provided on a given interface depends on the information defined in the class,
what information is needed by the classes defining the REQ relations, and the packaging goals. How-
ever, CoRE restricts the interface specification to contain only monitored variables, modes, terms,
and events (expressions of the monitored variables).

To illustrate a class interface, label an arrow from the class with the name of the environmental
variable or term that is defined by the interface. For example, consider Figure 5-10: mon_Ais on the

5-9

5. Representing the CoRE Class Model

interface of class_B, mon_D and term_C are on the interface of class_G, and ciass_H has no
interface. The controlled variables and the REQ relations are defined in the encapsulated
information for the classes (see Section 5.4.2).

mon_A _@ conB

Figure 5-10. Class Interface Notation

The arrows between classes represent depends-on relations. The class at the head of the arrow uses
the definition that appears on the interface of the class at the tail of the arrow. Arrows representing
monitored variables originating from an entity on the context diagram are defined by the class at the
head of the arrow. Arrows representing controlled variables terminating at an entity on the context
diagram are defined by the class at the tail of the arrow. In Figure 5-10, class_B defines mon_A and
con_B, class_G defines mon_D, and class_H defines con_F.

5.4.2 CLass ENCAPSULATED INFORMATION

The encapsulated information for a class is information that cannot be used by other classes. The
encapsulated information for a given class must either decompose into a more detailed class structure
or provide definitions of part of the behavioral model. Thus, the encapsulation structure is a hierarchy
of classes and subclasses, the leaves of which contain only definitions of environmental variables, input
and output variables, and REQ, NAT, IN, and OUT relations. Because traceability information is tied
to the behavioral model (e.g., environmental variables, REQ, NAT, IN, OUT), you trace requirements
only in the leaf classes.

When a class becomes too complex (i.e., its definition becomes unmanageable) or parts are likely to
change independently, additional packaging may be useful. You provide this packaging by defining a
class in terms of other classes, i.e., by encapsulating the definition of a class in a parent class. Thisrela-
tionship induces a hierarchy on the set of classes by using leveling. This is constrained so that all re-
quirements are defined by the classes at the leaves of the hierarchy (e.g., the encapsulated information
would be written in terms of monitored variables, controlled variables, REQ, NAT, IN, or OUT).
Classes above the leaves may export terms defined by their encapsulated classes, and they may define
additional terms that are functions of the terms or variables defined by their encapsulated classes.

Figure 5-11 illustrates the notation for the encapsulated information. The class class_B encapsulates
the definition of class_| and class_J in its encapsulated information. The interface of class_| defines
term_Xin its interface, and class_dJ encapsulates the definition of the controlled variable con_B and
the REQ relation for con_B. The classes class_ | and class_J are the leaves of the hierarchy for
class_B. Traceability information would be found in class_| (associated with IN relation for the
mon_A) and class_J (associated with REQ relation for con_B).

5.4.3 OBJECTS

An object is an instance of a class that specifies a subset of the definition of REQ, NAT, IN, and OUT
relations, including the definitions of the variables and terms, for a given specification. There is no

5-10

Figure 5-11. Encapsulation Structure Notation

graphical icon for a CoRE object; however, you do need to identify, by name, the objects specified by
each class if these objects will be referred to individually. If you need to specify more than one object
of a CoRE class, use the following conventions:

e Names of monitored and controlled variables and terms should be suffixed by a pair of angle
brackets (< >) containing the identifier of the object or a variable ranging over the possible
identifiers; e.g., a variable called <location> could denote a range of objects for pilot and
copilot.

¢ Function definitions for classes whose objects use terms or monitored variables from multiple
objects of other classes may need to be written in terms of specific objects.

Consider a control system for a four-engine aircraft whose CoRE specification contains the definition
of class_Engine with a monitored variable mon_Engine_Temperature and a term_Engine_Fail. The
class definition would contain the names of the four objects:

Number of Objects Specified: 4
Object Names:

left_out (left outboard engine)
left_in (left inboard engine)
right_in (right inboard engine)
right_out (right outboard engine)

The definition of the monitored variable mon_Engine_Temperature and the term term_Engine_Fail
would be the same for all four objects. Graphically, class_Engine would be depicted by Figure 5-12.

mon_EngineJemperature/\tam_Engine_Fai

@

Figure 5-12. class_Engine Diagram

51

5. Representing the CoRE Class Model

However, suppose that there is a mode machine class definition modeclass_Iin_Emergency, whose

single object monitors all four engines and initiates emergency actions as appropriate. If a special

action needs to be taken when both left engines fail, the associated condition is defined as:
term_Engine_Fail<left_out>=True and term_Engine_Fail<left_in>=True

Graphically, the mode machine class and associated terms can be represented as shown in Figure 5-13.

mon_Engine_Temperature /’\ term_Engine_Fail <left_out> Idﬂ o -

d‘“—E‘“@"‘) term_Engine_Fail <left_in> iﬂtﬂwy

Figure 5-13. class_Engine Diagram With Objects

5.4.4 INHERITANCE

The generalization/specialization structure is used to denote the inheritance relation. Inheritance is
a mechanism for specifying in a superclass the common requirements and properties that are shared
among a set of subclasses. A superclass defines a set of common properties or requirements for sub-
classes. Each subclass of the superclass inherits the requirements or terms defined by the superclass.
The subclass inherits the interface of its superclass by encapsulating the definition of the superclass
(i.e., the superclass definition acts like an encapsulated class).

When defining functions of a subclass where you need to include terms or monitored variables from
the superclass, separate the class names with a period (e.g., mon_Var_Name.subclass_Name,
term_Name.subclass_Name).

ExampLE: You have defined the following superclass (Table 5-4) and subclasses (Tables 5-5 and
5-6). Graphically, represent the superclass as encapsulated information of a subclass. Figure 5-14
illustrates both the naming convention and the graphical representation for superclass_A,
class_B, and class_C (in Figure 5-14, class_D and class_E represent classes encapsulated by
class B and class_C, repectively). The variable mon_A.class B represents the class B
monitored variable mon_A (defined by superclass_A).

Table 5-4. superclass_A Template

Class Name superclass_A
Class Description Superclass capturing the common requirements for .. .
Class Interface Defines:

mon_A : definition

Encapsulated Encapsulates:
Information
con_B : definition

Subclasses Derived class_B and class_C
Traceability This class encapsulates the following requirements . . .

5-12

Table 5-S. class_B Template

Class Name class B
Class Description Class extending the requirements of superclass_A . ..
Class Interface Defines:
mon_X : definition
term_Y : definition
Encapsulated Encapsulates:
Information
superclass_A
Objects Derived List object names
Traceability This class encapsulates the following requirements . . .
Thable 5-6. class_C Template
Class Name class_C
Class Description Class constraining the requirements of superclass_A ...
Class Interface Defines:
term_Z: definition
Encapsulated Encapsulates:
Information
superclass A
Objects Derived List object names
Traceability This class encapsulates the following requirements . . .

5-13

S. lhpruentig! the CoRE Class Model

Levelc

mon_A.class C

P I N O Y

Figure 5-14. Inheritance Notation

5.5 CLASS MODEL NOTATION SUMMARY

This section provides a sample class definition (Table 5-7) and a summary of the notation (see
Figure 5-15).

Table 5-7. Class Template Summary

Class Name Provide class name preceded by “class_”

Class Description Provide a description of the class.
Class Interface Defines:
List monitored variables, terms, or events.
Encapsulated Encapsulates:
Information

List monitored variables, controlled variables, terms, modes, events, IN, OUT,
REQ, NAT, and input and output variables or classes.

Objects Derived List objects derived from this class.
Traceability Provide traceability information.

5-14

Class

Object

Subclass Identifier

<object name>

var_name

Depends-on Relation —————»

Figure 5-15. Class Model Notation Summary

Event

5-15

5. Representing the CoRE Class Model

5-16

6. CoRE PROCESS OVERVIEW

This section has three purposes. First, it introduces you to the CoRE process. It outlines each of the
key process activities and describes what information you need for each activity and what product you
produce. After finishing this section, you should understand the overall purpose of each of the activi-
ties in CoRE and how they work together to produce a complete software requirements specification.

Second, this section describes the relationship between the idealized CoRE process and CoRE in
practice. An idealized process assumes a perfectly rational developer who always makes the right
choice in the right order. This ideal process produces a rational progression of products (top down)
beginning with the system specification and ending with the software requirements specification. A
description of the ideal process is useful because it provides an external standard to guide
development and it serves as a yardstick for measuring progress.

An idealized process description tells you where you want to go, but it is not always the best guide on
how to get there. The typical development process is iterative: more inside out than top down. The
maturity and level of detail for different parts of the specification are uneven, and the captured re-
quirements are constantly changing. In addition to the ideal process, CoRE provides heuristics and
guidelines to guide you through the more uncertain stages of actual development. Upon finishing this
section, you should understand how CoRE helps produce ideal products from a real process.

Finally, this section serves as a reference for the CoRE process. It provides an overview of each of the
CoRE activities, including the inputs to the activity, the goals, and the products produced.

6.1 THE IDEALIZED CoRE PROCESS

The ideal CoRE process is a sequence of activities that begins with a system requirements (i.c.,
allocation of system requirements to hardware and software components is complete) and ends with
a software requirements specification. The sequence of activities is organized around the behavioral
and class models. In other words, each step gathers some part of the behavioral requirements in terms
of the behavioral model, then captures that information in the class definitions. The process is ideal-
ized in that it does not account for errors, requirements changes, unknown requirements, or other fac-
tors requiring additional iteration, experimentation, or backtracking. A schematic showing the
activities and products of the ideal CoRE process is shown in Figure 6-1.

6-1

6. CoRE Process Overview

uoneY pRlIONIN)
oy mding

(e ‘worsosg
woonimpg
lqeuwp Jding

. fouspuads pnpoxy uoneoywads uoneoyreds
SPUPOI PUS SO TIOD T9amBLy MR P .am ceipsus] TCOJO Ul wawshs jo e
-— :]
puadyy
Supensuc)) HHeIny luon-ﬁ.&bm Eﬂ.&m
0} 3uney uonsuIOU]
ays.nsao) duymy |, fargnseo) soamambay
Juympaps [enio] - !
*
nupensuoy - -
dampes suopwaypadg NwpNu
sjuRnsuo0) jmauodmo)) waysis \
suopwayRdg apopy [MuImsarAny -
L]
"
o Sped [t I S— X - =o=8u.|u..u“_ml
suoploydqg [uImuosjAUg 3558_.:?5
3qeHvA PIf[ONTD Nepipun) wayshs |
aunpung pus paojuoly -
| w|x mopwzirpads
X X | o=
X X =
F) [[T
[X-]
RS Reed PO mashg
PPON -
smLR] ‘suoniatRq UOREHLONT AY0D _ o
soupIay ssel)
[eusjul pae b.w_..:.on _’ MINIAQ WIHSAS ...u...o.....m GoIssSIN
uoneayIoadg uopeoydg
Jojaeyayg Jolaeyog uopeddg
paielnq Areupuyppig SuISAS

62

6. CoRE Process Overview

6.1.1 IDENTIFY ENVIRONMENTAL VARIABLES

Goals Identify candidate environmental variables and the relations among them.
The overall goal is to identify environmental quantities that denote the
monitored and controlled variables, relationships that will become parts of the
REQ and NAT relations, and relationships that will become part of the
generalization/specialization structure. Identify likely changes and their
impacts on these environmental variables.

Inputs * The system requirements
* System interface specifications
» Device interface specifications

» Other sources (including people) that define or constrain the role of
the software

Purpose The purpose of this activity is to identify the environmental quantities with
which the software interacts and the constraints among such quantities. You
use this information in building both the CoRE behavioral model and class
model. First, the physical quantities that you identify help in determining the
environmental variables and the associations that must be maintained by the
REQ or NAT relation in the behavioral model. Second, identifying entities
and capturing similarities among entities aid in identifying classes and the
inheritance relation in the class model.

Products ¢ Information model (ERD, attribute matrix)
¢ Preliminary NAT relations
¢ Likely changes list

Decisions Decisions about required behavior:

¢ Which entities and relationships described in the system specification
and other sources imply software requirements

e Which entities and relationships in the environment represent
constraints on the required behavior

Decisions about packaging the software specification:
* Which requirements might change and how likely is the change

* Which physical quantities are related and should be thought of as
attributes of the same entity or which entities are inherently related
and should be thought of as instances of some higher level entity

* Which requirements are poorly understood or represent high risk

6-3

6. CoRE Process Overview

6.1.2 PRELIMINARY BEHAVIOR SPECIFICATION

Goals Identify and specify the monitored and controlled variables. Identify
undesired events to which the software system must respond, and define
monitored variables to denote them. Identify the domain and scheduling type
for each controlled variable. Identify modes.

i

o Information model

¢ System requirements

{

The overall purpose of this activity is to identify enough of the elements of the
behavioral model to make appropriate packaging decisions in the subsequent
activity. In this activity, you determine and capture the relationship between
the software and its environment using the CoRE behavioral model. You
decide which environmental quantities are monitored, controlled, or both.
You then denote the quantities by monitored and controlled variables.

You determine what information about the monitored variables and modes
you will need to write each of the controlled variable functions. You decide
how many mode machines are needed and the modes and possible transitions
for each.

Products * Monitored and controlled variable definitions
* System context diagram
e Partial REQ definition for each controlled variable
¢ Initial mode machine definitions
Decisions Decisions about required behavior:
* Which quantities you consider monitored, controlled, or both
* Which undesired events the software system must respond to

¢ Which monitored variables, modes, or other information is needed to
write the controlled variable functions

* Whether each controlled variable has a periodicor demand scheduling
requirement

* How many mode machines are needed, the modes in each, and the
allowed transitions

6.1.3 CLASS STRUCTURING

Goals Create a class structure to address your packaging goals. Decide how the parts
of the behavioral model will be allocated among CoRE classes. Create

6. CoRB Process Overview

boundary, mode, and term classes based on your packaging goals. Define the
class interfaces and identify class dependencies.

¢ Monitored and controlled variable definitions

¢ CoRE information model

¢ Partial REQ definition for each controlled variable
¢ Likely changes list

* Initial mode machine definitions

In Class Structuring, you make the packaging decisions for your specification.
You define a set of classes that will contain all the elements of the CoRE
behavioral model. You determine which classes will be further decomposed

‘into additional classes. You determine which common parts of the

specification will be represented using superclasses and subclasses. You define
the interface for each class applying the principles of abstraction and
information hiding. You define interface terms to provide the information
necessary to define the modes and controlled variable functions.

* Boundary, mode, and term class interface definitions, including the
encapsulation structure and generalization/specialization structure

* Term definitions
* Dependency graphs
Decisions about required behavior:
* Which terms are needed
* What mode information is needed

* Which classes depend on what information defined on the interf. s
of other classes.

Decisions about packaging the specification:

¢ Whichboundary classes are required and how monitored or controlled
variables are allocated to the boundary classes

e Which term classes are needed

6.1.4 DETAILED BEHAVIOR SPECIFICATION

Goals

Complete the class definitions by completing the specification of the
controlled variable functions and timing constraints for each controlled
variable. Refine the class structure to be consistent with the behavioral model
needs.

6-5

6. CoRE Process Overview

Preliminary NAT relations

Monitored and controlled variable definitions
Class interface specifications, including modes and terms
Controlled variable overviews

System requirements

Purpose In this activity, you complete the specification of the required behavior of the
software by completing the definition functions and timing constraints for each
controlled variable. You capture the behavioral requirements that the
software must meet by defining the values each controlled variable is allowed
to assume for each possible state of the system. You specify any timing and
accuracy constraints on the variables, including period and deadlines.

Products Complete controlled variable and mode machine specifications, ihcluding:

Controlled variable function definitions
Accuracy constraints

Timing constraints

NAT relations

Detailed mode machine definitions

Refined dependency graphs

Decisions Decisions about required behavior. For each controlled variable:

For which modes is the value of the controlled variable defined
What determines the required value in each mode
What is the tolerance in accuracy for each possible mode

What are the detailed timing constraints governing when the
controlled variable must be set

- 6.1.5 DEFINE HARDWARE INTERFACE

Goals Define the software system inputs and outputs. Define the IN and OUT
relations.
Inputs * Boundary class definitions

Device interface specifications

6. CoRE Process Overview

Purpose Identify how the software system inputs and outputs can be used to establish
the value of monitored variables and how to set the values of controlled
variables. You complete the definitions of the boundary classes by specifying
the input and output variables and defining the IN and OUT relations. Define
any additional constraints on the presentation of monitored and controlled
quantities (e.g., specify the requirements for user interfaces).

Products * Input and output variable definitions
e INand OUT relations
Decisions Decisions about required behavior:

e What inputs can the software use to determine the value of each
monitored variable; how can the software use the inputs to determine
the value (the IN relation)

* What outputs can the software use to set the value of each controlled
variable; how can the software use the outputs to set the value (the
OUT relation)

Decisions about packaging the specification:

* In which class should each input and output variable, IN, or OUT
relation be defined

6.2 CoRE IN PRACTICE

In practice, you are concerned with both developing the requirements specification and managing the
development. The ideal CoRE process proceeds systematically from system requirements to the soft-
ware requirements specification, adding detail in each activity. Every decision must be made individu-
ally, and the specification is built up as a sequence of detailed decisions and iterations on those
decisions. To provide useful guidance in the day-to-day practice of developing a specification, a meth-
od should help answer two basic questions at any given level of detail: “What should I do next?” and
“How do I know when I am done (or done enough)?” CoRE helps answer these questions through
its behavioral model because, for a given set of controlled variables, the model determines exactly
what kinds of information are needed to write a complete CoRE specification.

Specification development also tends to be highly concurrent, asynchronous, and subject to change.
Several people typically will be developing the requirements at the same time. Some parts of the re-
quirements wil! be well understood and can be captured in detail, while other parts are fuzzy or highly
likely to change. To help manage development, CoRE provides guidance and facilities for breaking
a specification into parts that can be developed or changed independently.

6.2.1 SPECIFYING REQUIRED BEHAVIOR

The behavioral model drives the specification of required behavior. Because the model is
standardized, the general set of questions that must be answered to provide a complete specification
is known in advance. Further, because the model is known in advance, CoRE provides templates to
help capture the details of the specification.

6-7

6. CoRE Process Overview

The detailed guidance provided by CoRE is keyed to the individual controlled variables. When you
decide what the controlled variables will be, the same basic set of questions must be answered for each
one. When those questions have been answered for one variable, its specification is complete. When
they have been answered for all of the variables, the entire specification is complete. If any of the an-
swers are unknown, this will be clear from the format and content of the specification. The CoRE tem-
plates show explicitly which parts of the specification are incomplete. The following summarizes the
sequence you follow in specifying the required behavior of a controlled variable. More detailed
guidance is provided in the process section.

1. Define the Identify a distinct environmental quantity (e.g., the state of a valve) controlled
controlled by the software system. Create a controlled variable denoting the quantity, and
variables. define the name of the variable, physical interpretation, type and range of

values, and any other relevant NAT constraints, such as maximum rate of
change.

Additional Guidance: Controlled variable template (Table 4-2)

2. Define the Identify the quantities in the environment that the software system will need
monitored to track. For each relevant quantity, create a monitored variable modeling the
variables. quantity and define the name of the variable, physical interpretation, type and

range of values, and any other relevant NAT constraints, such as maximum
rate of change. Figure 6-2 illustrates the results of steps 1 and 2.

Additional Guidance: Monitored variable template (Table 4-2)

Boundary Class Definition—Monitored Mode Class Boundary Class Definition—Controlled
id Side

Figure 6-2. Results of Steps 1 and 2

3. Define the Define the required controlled variable behavior as a function giving ideal
controlled behavior. First, identify in which states of the system the function must be
variable defined (i.e., the domain of the function). If the behavior changes as a function
Junction of the monitored variable’s history, identify or define the relevant mode
domain. machines.

Additional Guidance: Controlled variable function template (Section 4.3.1)

4. Define mode Where the value of the controlled variable is a function of the monitored
machines. variable’s history, define a mode machine to model the state and state changes.
Identify the relevant states (i.e., those that partition the domain of the

controlled variable function) and model these with the modes of a mode class.

6-8

6. CoRE Process Overview

Define the transitions between classes in terms of changes in monitored
variables (events). Figure 6-3 illustrates the resuits of steps 3 and 4.

Additional Guidance: Finite state machine model for mode machines
(Section 4.1.5)

| Boundary Class Definition—Monitored Mode Class' Boundary Class Definition—Controlled
Side Side
Mode Specifications

/

{

Events: \ '

@T(Reset) wxmn\rqdaw

: \ '

\ |

\\ \
~

5. IHdentify the
conditions.

6. Define the
controlled
variable
tolerance.

7. Define input
and output

8. Define the IN
and OUT
relations.

Figure 6-3. Results of Steps 3 and 4

For each mode, identify under which circumstances the controlied variable
takes on which possible values. Equivalently, you must fill in each cell of the
controlled variable function table; this defines the behavior in every possible
state of the monitored variables.

Additional Guidance: Controlled variable function template (Section 4.1.5)

Establish the range of variation allowed in the controlled variable value in each
possible state, and represent this as a tolerance in accuracy. Establish the
range of variation allowed in the timing, and define the timing and accuracy
constraints. Figure 6-4 illustrates the results of steps 5 and 6.

Additional (-uidance: Controlled variable function template (Section 4.1.5)

Identify the inputs used to determine the values of the monitored variables
used, and define an input variable for each. Identify the outputs used to set the
value of the controlled variable, and define an output variable for each.

Additional Guidance: Input and output variable templates (Table 11-1)

For each monitored variable, specify how the value of that variable can be
determined from the input variables. Define a relation showing how the
required value of the controlled variable can be set by assigning values to the
output. Figure 6-5 illustrates the results of steps 7 and 8.

Additional Guidance: IN and OUT relation tables (Section 11.3.3)

6-9

6. CoRE Process Ovcerview

Side

Boundary Class Deﬁnitlon——Monitond

Mode Class

Boundary Class Definition—Controlled
Side

Mode Specifications

Figure 6-4. Result of Steps 5 and 6

Side

Boundary Class Definition—Monitored

Mode Class

Boundary Class Definition—Controlled
Side

Mode Specifications

e wHENY i
T (Reset) WHEN ideHys-
// Range) \

\ INRelation Specification

\
A\
IN Rghhon\

Conditio\ DiffPress=
LCB<FuelLevel<UCB FuelLevel —offset/scale*235
FuelLevel<LCB 0
FuelLevel>LCB 255

Input Variable

Acronym: Differential Pressure
Hardware; Differential Pressure Unit
Characteristics of Value: {0.255]
Data Transfer: ADC(0)

Data Representation: 8-Eit unsigned

Figure 6-5. Results of Steps 7 and 8

OUT Relation Specification /
; 7

Out Relation
Event Action

@T(char=bel)| LowAlarm=on

@T(duration>0.5 8)| LowAlarm=off

Output Variable
Acronym: Audible Alarm
Hardware;

Characteristics of Value: on 1b,
off 0b

Data Transfer: Port C

Data Representation: Bit 5 of Byte

6-10

6. CoRE Process Overview

6.2.2 ITERATION AMONG CORE ACTIVITIES

In practice, you must iterate the CoRE activities as you refine your understanding of the behavioral
requirements, the implications of your packaging decisions, or as requirements change. This section
discusses how you will iterate between the major CoRE activities. Where additional guidance is need-
ed on iteration within an activity, this is given in the relevant section of the guidebook. In general, it
is assumed that you will iterate as necessary within an activity.

The primary reason for iteration among CoRE activities is to resolve discrepancies between
packaging decisions (class structuring) and behavioral modeling. The driving problem is that you
cannot finalize decisions about the class structure until you understand what information is needed
by which classes to complete the detailed behavior specification. Conversely, you will not be able to
complete the specification of the behavioral model without making decisions about what information
the class structure will encapsulate and what information will be public. Thus, you will typically specify
part of the behavioral model, do some class structuring, evaluate the class structuring, then return to
specifying the behavioral model until the open issues become sufficiently resolved to stabilize the
specification.

In part, this iteration is captured by the major CoRE activities. The goal of Preliminary Behavior
Specificationis to identify enough of the components of the behavioral model to make sensible pack-
aging decisions. Detailed Behavior Specification revisits the class structuring decisions. In addition,
you will iterate as follows:

* Youiterate between Preliminary Behavior Specification and Class Structuring. As you begin
to understand what information you wish to encapsulate in the classes and what the form of
the class interfaces will be, you may revisit and refine the information about the controlled
variables functions you gathered in Preliminary Behavior Specification.

* You iterate between Class Structuring and Detailed Behavior Specification. As you
understand the detailed requirements, you may determine that you have encapsulated
information needed by other classes. This will force you to revisit Class Structuring.

Overall, much of the iteration will involve what information must appear on the class interfaces. This
isbecause there is aninherent conflict between the goals of class structuring and the goals of the behav-
ioral model. Class structuring seeks to reduce complexity and dependency by encapsulating as much
information as possible; however, the behavioral model cannot be completed without sufficient
information. To balance these concerns requires iteration between these activities.

Particularly affected by the iteration is the choice of terms (expression of monitored variables) defined
in the class interfaces. Terms are one of the primary vehicles for abstracting from details while provid-
ing exactly the information needed to write the behavioral model. Because of this, the ideal process
description allocates the activity of creating terms primarily to Class Structuring. However, because
you will write the behavioral specification using those terms, you will typically revisit the choice of
terms and their definitions in Preliminary Behavior Specification, Class Structuring, and Detailed
Behavior Specification.

In spite of the necessary iteration, your goal is to stabilize as much of the class structure as possible
during the Class Structuring activity. It is the fact that classes have stable and well-defined interfaces
that will allow independent development of the individual classes.

6-11

6. CoRE Process Overview

6.2.3 MANAGING REQUIREMENTS DEVELOPMENT

The CoRE method allows you to divide a requirements specification into a set of distinct and relatively
independent parts. At the systems level, you can divide the problem into distinct subsystems. You di-
vide the software specification into a set of classes. Classes may encapsulate additional classes and
class dependencies. These provide the packaging facilities needed to manage development issues.
While the specific goals and necessary techniques depend on what must be managed, the general ap-
proach is to use the class structure to encapsulate parts of the specification that must be treated as a
unit, for example:

Concurrent Development. You will often want to break the specification task into parts, each
being a distinct work assignment. You can use the class structure to accomplish this. Whenyou
define the interface of a class, you can only use information defined in the interfaces of other
classes to develop the encapsulated part. One or more classes can be allocated as a work as-
signment and completed independently. Where there must be changes to a class interface, the
CoRE dependency graph allows you to determine which parts of the specification and, hence,
which work assignments are affected. ‘

Risk Mitigation. You will want to develop different parts of your specificationto differentlevels
of detail at different times. Where parts of the requirements are considered higher risk, you
may proceed to Jdetailed specification, design, or implementation to mitigate that risk. For ex-
ample, you might develop part of the software to better understand the problem or to ensure
that your solution is satisfactory. In some cases, one part of the requirements may be better
known or better understood than another. In such cases, the class structure can be defined so
the parts that will be developed to detail are encapsulated in one or more classes.
Development of these classes can then proceed independently of the rest of the software.

Fuzzy or Changeable Reguirements. Particularly in the initial stages of development, some
requirements will be fuzzy and others will be highly volatile as the software develops. You will
want to reduce the likelihood that the refinement of fuzzy requirements or changes in volatile
requirements affects other parts of the specification. In CoRE, you can encapsulate fuzzy or
volatile requirements in a class, putting only the most stable requirements on the class inter-
face. Then, changes to those requirements will be confined to the defining class. Conversely,
you may choose to isolate and develop a part of the software that is considered stable. Either
approach can be used in shaping an evolutionary development process (e.g., specify
best-defined first or identify and specify high-risk areas).

6-12

7. IDENTIFY ENVIRONMENTAL VARIABLES

This guidebook assumes that you start the software requirements activity with a set of system
requirements that, from the standpoint of creating a CoRE specification, are relatively unstructured,
inconsistent, and incomplete. In addition, the guidebook assumes that relationships among the candi-
date environmental variables are not simple and well understood; e.g., you may know that related sets
of candidate environmental variables characterize distinct things but are not sure that the things
should be thought of as instances of the same entity.

The Identify Environmental Variables activity focuses on informally identifying, collecting, and
organizing the information you will need to create a CoRE specification. In particular, it focuses on
identifying candidate environmental variables and the relationships among them. The creation of an
information model drives this activity, where an information model nominally consists of a set of enti-
ties, attributes of the entities, and the relationships among instances of the entities. However, the in-
formation model is not a part of a CoRE specification; it is solely used to help you gather and organize
the information you need to create the formal CoRE specification (described in Sections 8 through
11).

You use the information model to populate both the CoRE behavioral model and class model. In the
behavioral model, you consider the entity attributes to determine which environmental quantities will
be captured as monitored variables and controlled variables. You also gain a preliminary understand-
ingof the information you need to define the REQ (which monitored variables determine the required
value of each controlled variable) and NAT relations (how the environment of the software system
constrains the values that the environmental variables can assume).

In the class model, you consider which variables are inherently related and should be defined in the
same CoRE class. Also, you identify which variables should be thought of as specializations of a more
general variable (described by the generalization/specialization relation).

7.1 GOALS

The goal of this activity is to identify candidate environmental variables (attributes) and to understand
and record how they and the things in the environment that they characterize (entities) are related.
In this activity, you want to gather and organize information so that you have a complete list of:

* Physical quantities that you use to specify the software requirements and the definitions of the
attributes that denote them

* Entities in the environment that the attributes characterize and the subclass and aggregation
relations among the entities to organize the information

7-1

7. Ideatify Environmental Variables

* Relations among the entities that constrain the values that their attributes can assume

¢ Likely changes and their impact on the environmental variables

7.2 ENTRANCE CRITERIA

One or more sources of information about the system, its requirements, and its design are required
to perform this activity. The following are typical sources of this information:

* System requirements specifications

¢ System interface specifications

o Technical descriptions of devices that are part of the software system
¢ Access to domain experts

Specification documents vary considerably in format and degree of formality depending on the nature
of the project. Whatever the organization and level of detail of the systems-level specification docu-
ments, it is important to identify supplementary sources of information. A technical manual for any
device to which the software must interface may be a critical source of information. Furthermore, do-
main experts, who are familiar with the engineering, physical science, and human factors of the prob-
lem doniain, are often needed to provide supplementary information. In some projects, they may be
the primary source of information.

7.3 ACTIVITIES
The Identify Environmental Variables activity is composed of the following subactivities:

* Theldentifyand Define Attributes subactivity guides you in identifying the physical quantities
(environmental variables) that are relevant to describing the behavior of the software.

e The Identify Entities subactivity guides you to organize the attributes by identifying the
entities in the environment that the attributes characterize.

¢ Theldentify Generalization/Specialization Relation subactivity guides you in commonality on
the values of the attributes.

» The Identify Aggregation Relation subactivity guides you on the values of the attributes.

» The Identify Application-Specific Relation subactivity guides you in constraints on the values
of the attributes.

¢ The Identify Likely Requirements Changes and Associated Variables subactivity guides you
to identify likely changes in the system-level requirements and to relate each change to the
environmental variables.

The CoRE information model serves a different purpose than a traditional data model (like the model
outlined by Chen [1976]). The emphasis of this activity is to identify the environmental variables and

7-2

7. ldealify Esviroanmesial Variables

their constraints, aet implications of data integrity, information retrieval, and data manipulation. The
CoRE information model also differs in that concepts, such as key attributes, cardinality, and third
normal form, are not considered. The common diagraming technique for capturing an information
model is an ERD, and building one of these for CoRE is optional. You could capture relationships
among the attributes in an attribute matrix. The examples given in this section are illustrated using
the graphics for an ERD and an attribute matrix (see Section 5.1).

Note that the sequencing of activities does not follow an idealized top-down process. In such an
idealized process, for example, entities would be identified first, and then the attributes of each entity
would be identified. The activities are shown here in more of a bottom-up fashion, which is appropri-
ate because the sources of information for performing the activities are not likely to be organized to
best support a top-down process. This ordering of activities assumes that it will be easier for you first
to identify the attributes from the information available to you than to identify the entities first. If you
think it will be easier to identify the entities first, you should identify the attributes after you have
identified the entities or perform the activities concurrently.

7.3.1 IDENTIFY AND DEFINE ATTRIBUTES

This activity’s goal is to identify physical quantities that are relevant to describing the required
behavior of the software and to define an attribute to denote each quantity. The software may monitor

.or control these quantities, or their values may influence quantities that the software does monitor
or control. It is not necessary to make such distinctions in this activity; rather you simply identify, de-
fine, and collect all of the attributes. It is also not necessary in this activity to ensure that the attributes
are independent of one another, i.e., that the value of one cannot be computed from the value of
another.

Likely sources of attributes are:

e Variable properties of physical objects in the problem scope, e.g., positions, velocities, and
temperatures.

* Physical quantities, such as dimensions of physical objects.

e Information passed across the interface of physical devices, e.g., device status or device
commands. Environmental variables typically abstract the interfaces of physical devices. We
look at physical devices because they give us insight into which physical quantities the software
system can monitor and control.

» Information provided by or supplied to a human user, e.g., user commands or user displays.

* Undesired events, e.g., failures of components of the system or of the software system itself,
to which the software system is required to respond.

ExorLE: Inthe FLMS problem, variable properties include the level and flow rate of fuel in the
tank. Information passed across device interfaces includes the signal that opens or closes the pump
relay. User interface information includes the reset signal provided by the user via a push button.
Because the FLMS is a safety system, the failure of it is an important concern and is denoted by
the attribute Failure of FLMS. Table 7-1 provides a more complete list of attributes for the FLMS.

7-3

7. ldentify Environmental Variables

Table 7-1. Sample Fuel Moaitoring System Aftributes

1. ShutdownRelay
2. Power

3. Failure of FLMS
4. Fuel flow rate

5. Fuellovel

6. Level too high
7. Level too low
8. Reset

9. Selftest

10. Fuellevel display

11. Audible alarm

12. Level too low alarm
13. Level too high alarm

Define the attributes that you have identified to precisely communicate your decisions to other
engineers. Clearly describe the association between the physical quantity and the attribute that de-
notes it. Describe the association between what can be observed from a view external to the software
system and what value the attribute will assume (see Tables 7-2 and 7-3). In Section 8.3.1, you expand
upon this definition for attributes that you decide are environmental variables. You may decide that
you understand the software system and its environment well enough that you already know which of
the attributes are monitored and which are controlled variables. In this case, you may want to provide
the more complete and precise definitions of attributes that Section 8.3.1 describes for environmental
variables.

Table 7-2. Sample Definition of an Enumerated Attribute

Attribute Definition
ShutdownRelay The fuel pump shutdown relay is closed.
The fuel pump shutdown relay is open.

74

7. 1deatify Environmental Varisbles

Table 7-3. Sample Definition of a Numeric Attribute

Attribute Definitions

Fuel Level Level of fuel in the tank, in centimeters (cm), along the vertical axis on
the left side of the tank, 5 cm from the front edge. The level is measured
with respect to the scale.

7.3.2 IDENTIFY ENTITIES

The goal of this activity is to organize the attributes by identifying the entities in the environment that
the attributes characterize. The entities are often physical things (e.g., engines, aircraft, radios, and
other equipment), but they may include the roles played by persons or organizations (€.g., pilot, opera-
tor), incidents, processes, interactions (e.g., the mixing of dyes in a vat, a near-collision of two aircraft),
and specifications (e.g., a specification of the attribute values that distinguish pickup trucks from
minivans) (Shlaer and Mellor 1988).

In addition to the attributes, consider the following when identifying entities:
¢ Devices that are monitored or controlled by the software
e Physical entities that are “observed” via sensors by the software
* People or systems that receive information from or provide information to the software
¢ The software system itself or possibly its subsystems

Associate each attribute with the entity that it characterizes. You may identify entities that no attribute
characterizes. When you do so, look for attributes you have overlooked to characterize the entities.
To establish a context for the software system, you may want to include in your information model
entities characterized by no attributes.

Table 7-4 lists the FLMS entities and the attributes that characterize each of them. Consider whether
there may be multiple instances of any of the entities that you have identified (¢.g., four-engine entities
on an aircraft). Indicate multiple-entity instances by recording the number of instances with the entity.

The entities that you have defined represent a relatively unstructured set of information. Organize
the entities by examining them and the specifications that serve as inputs to this activity to determine
how the entities are related to one another by generalization/specialization, aggregation, and
application-specific relations.

7.3.3 IDENTIFY GENERALIZATION/SPECIALIZATION RELATION

The goal of this activity is to identify similarities among entities and record this information via a
generalization/specialization relation. The generalization/specialization relation indicates that one
entity is an instance of a more abstract entity; ¢.g., the reset and selftest switches are instances of a
more general two-position switch (see Figure 7-1). This relation allows you to record essential similar-
ity among entities in the system’s environment. Recording this similarity will be useful when you try
to understand what changes are likely to occur together.

7-5

7. Identify Environmental Variables

Table 7-4. Sample Fuel Level Monitoring System Entities and Attributes

Entity Attribute
Pump ¢ ShutdownRelay
¢ Power
FLMS ¢ Failure
Fuel Tank * Fuel level
* Level too high
e Level too low
Fuel * Fuel flow rate
Operator Interface * Instances
* Reset
* Selftest

* Fuel level display
* Audible alarm

¢ Level too low alarm

* Level too high alarm

7.3.4 IDENTIFY AGGREGATION RELATION

The goal of this activity is to provide structure and information that the software must maintain that
belongs to an aggregate as opposed to an individual part. The aggregation relation indicates that one
or more entities are part of another entity (e.g., engines, wings, and fuselage are part of an aircraft).
This relation allows you to record information that may be helpful in understanding the system’s envi-
ronment and structuring your description of it. This relation may lead you to identify additional enti-
ties that aggregate entities you have already identified. Figure 7-1 includes the entities Shipboard Fuel
System (an aggregate of the entities already identified) and Operator Console (an aggregate of Alarm
and Display).

7.3.5 IDENTIFY APPLICATION-SPECIFIC RELATION

The goal of this activity is to develop an understanding of constraints on the values of attributes that
the system’s environment imposes or that the system is required to impose. In subsequent activities,
you will expand on and refine this information to create the NAT and REQ relations, respectively. In
this activity, you will not attempt to distinguish between the two or attempt to specify precisely what
those constraints are. Rather, you will decide which attribute values may be affected by the values of
which other attributes.

7-6

Shipboard Fuel
System
Pump FLMS) Fuel Tank
L ShutdownRglay ¢ Faiure ¢ Fuel Level
s Power ¢ Level Too l’ﬁgb
* Level Tool Low
is_part_of
| Operstor Interface | Fuel
¢ Fuel Flow Rate
Switch [Operator Console |
e Positi
<> -
r L
| Seiftest] | Reset | [l
Alarm Display
e On * Fuel Level Display
isa
| 1
| High Alarm]| Low Alarm ~ |[Audible Alarm]

Figure 7-1. Information Model for the Fuel Level Monitoring System

Examine the entities and attributes that you have created, looking for pairs of attributes in which the
value of one determines, prescribes, or constrains the value of the other. For each pair, create arela-
tion between the entities chai acterized by the attributes. If the attributes characterize the same entity,
the entity will be related to itself. Annotate the graphical information model with the relation, or use
an attribute matrix to record the attributes constrained by the relation (see Table 7-5).

7-1

7. Identify Environmental Variables

IOYI0 Yoea 199JJe Je) SInqUY = X

Kerdsiqreaay Aeldsiq

UQ ULIBlY jqIpRy

uQ ey Aoy

uQ ey Y3y

X X X uonisod 89y
X X X uonisod 1S9YPS
dpeYMoLIIong Png
X MOTOQL{FAYT
X X X YBrHOQL[9AYT
X X X X X | x [PAY TN YusL [Png
X X ampe] ST
J9MOd
X X X X X Kejoyyumopinys damg
o] (o) es! ! o] ¥ W
) S el §| §| E|Y §F Bl E|§ ¢
g E g i 8 O w E g &
.m] S W .wl_ m 3 m
— < H
& 3 m. & ,m.
ueyy uey :
kedsig | sqipny iy | sy | wyps | pna Ry, Png swix | dwmng

XUJE SINqUNY WisAS SULIOIUOR [9AT [9N °S-L 9[98L

78

7. Identify Environmental Variables

ExaqpLe: Figure 7-2 shows an example of a constraint between two entities, Weapon and Target.
This figure shows the relationship between Weapon and Target, where a weapon is designated to
a target.

Weapon des:%na Target
o

Figure 7-2. Weapon and Target Constraint

7.3.6 IDENTIFY LIKELY REQUIREMENTS CHANGES AND ASSOCIATED VARIABLES

The goal of this activity is to identify likely changes in system-level requirements and to relate each
change to its impact on the potential environmental variables (i.¢., the attributes that you have identi-
fied). Create a list of the likely changes that you identify. You will use this list of likely changes with
other system-level information available to you to allocate the environmental variables into classes.

Consider how the potential environmental variables that you developed might change. For example,
in the FLLMS problem, human factor issues can cause changes to the variables that describe the in-
formation that the system provides to the user: Audible Alarm, High Alarm, Low Alarm, and Fuel
Level Display. Such a likely change can be described by the following description:

The information that the system provides to the user and how that information is presented
is likely to change.

Also, consider information provided by the following in developing the list of likely changes:
* System requirements specifications
¢ System interface specifications
¢ Technical descriptions of the devices with which the software interacts
* Discussions with domain experts

In particular, look for areas in which knowledge of the system and its environment appears vague or
contradictory. For example, in the case of FLMS, if some of the experts discuss unsafe conditions in
terms of the fuel level in the tank and others discuss unsafe conditions in terms of the volume of fuel
in the tank, you could consider this description a likely change:

How the FLMS will determine unsafe conditions is likely to change.
An example of the likely change list from the FLMS follows:

1. The means for informing the operator of the FLMS state (i.e., the alarms and displays) is
expected to change independently of how the system recognizes unsafe conditions.

2. Level display is likely to change independently of the rest of the system.

3. High and low alarms are unlikely to change independently of one another. They are likely to
change independently of the rest of the system.

7-9

7. Jdentify Environmental Variables

4. The physical characteristics of the push buttons are unlikely to change independently of one
another. They are likely to change independently of the rest of the system.

5. The exact levels that are considered out of range may change from one installation of the FLMS to
another or over time. They are likely to change independently of the rest of the system.

7.4 EVALUATION CRITERIA

Evaluate the products of this activity by answering the following questions:
* Have you completed the definitions of each entity, attribute, and relationship?
* Have all relevant relationships among entities been identified?

* Have likely requirements changes and associated entities or attributes been identified?

7.5 EXIT CRITERIA

You have completed this activity when you can answer “yes” to each of the questions in Section 7.4
and you have developed the following products:

s Candidate list of environmental variables

¢ Candidate list of the information needed to determine the required value of each controlled
variable

¢ Candidate list of how the environment of the system c_nstrains the values that the
environmental variables can assume

e Likely change list

7-10

8. PRELIMINARY BEHAVIOR SPECIFICATION

In the Preliminary Behavior Specification activity, you make a first cut at identifying and defining the
clements of the behavioral model for the software you are developing. You will use the environmental
quantities and relations you identified in the previous activity (Identify Environmental Variables) as
well as information about sequencing behavior (e.g., system modes or states) from the systems
specification to perform the following activities:

* Identify and define monitored and controlled variables

» Identify domain and scheduling type for each controlled variable
¢ Identify terms

¢ Identify the modes

The products of this activity include definitions of the monitored and controlled variables, an overview
of each controlled variable domain and scheduling type, a description of each term, and a description
of each of the system mode machines.

This activity lays the foundation for subsequent packaging and detailed specification activities. It is
intended to develop sufficient information about the behavioral requirements so thatyou can proceed
to make sensible packaging decisions. It also lays the groundwork for the detailed specification of the
REQ relation (the goal of Detailed Behavior Specification).

8.1 GOALS
The goals of this activity are to:

¢ Identify which environmental quantities you treat as monitored and controlled and denote
these as monitored and controlled variables.

e Determine whether the scheduling type for each controlled variable is periodic or demand.
Identify which modes and monitored variables determine the controlled variable’s value.

e Identify which terms are needed to define the controlled variable functions and the modes.

¢ Determine how many mode machines are needed and, for each, the initial mode and the
allowed mode transitions.

8.2 ENTRANCE CRITERIA

To perform the Preliminary Behavior Specification activity, you need the following products:
* The information model developed in the Identify Environmental Variables activity
» List of likely changes

¢ System requirements or other specifications defining system modes and the sequencing of
activities controlled by the software - :

8.3 ACTIVITIES
The Preliminary Behavior Speciﬁcatibn activity is composed of the following subactivities:

< Identify and Define Monitored and Controlled Variables. 1dentify which quantities the software
will monitor and control and denote them as monitored and controlled variables, respectively.
Develop the definition of each variable, and create the system context diagram.

¢ Establish Controlled Variable Function Domains. The REQ relation for each controlled variable
must be written in terms of the values or state history of the monitored variables. In this activ-
ity, you decide which monitored variables and which modes determine the value of each con-
trolled variable and record the information. You also determine whether the controlled
variable must be set periodically or on demand.

e Define Mode Machines. Determine the number and characteristics of the mode machines.
Decide how many mode machines are needed. For each mode machine, specify the modes,
initial mode, and allowed mode transitions. Identify and record where one mode machine de-
pends on another. Identify and record which controlled variables depend on which mode
machines.

8.3.1 IDENTIFY AND DEFINE MONITORED AND CONTROLLED VARIABLES

The goal of this activity is to define the monitored and controlled variables you use to write the REQ
and NAT relations. To start this activity, you need the set of attributes, attribute definitions, and ap-
plication-specific relations you identified in the Identify Environmental Variables activity. The prod-
ucts of this activity are the system context diagram and the definition of each monitored and controlled
variable in your specification.

Start by identifying the controlled variables. Because the ultimate purpose of the monitored variables
is to allow you to write the controlled variable functions, exactly which monitored variables are most
appropriate depends on the choice of controlled variables.

8.3.1.1 Identify Controlled Variables

In this activity, you identify which environmental quantities you denote as controlled variables and
create the corresponding controlled variable definitions. To identify the controlled quantities, first ex-
amine the attributes and application-specific relations created in the Identify Environmental Vari-
ables activity. Examine the attribute definitions and the relations to determine which quantities are

82

8. Preliminary Behavior Specification

partially or completely under control of the software. Look for devices whose states are sct by
software, situations where information is supplied to the operator or to other systems, and situations
where other quantities are produced or affected by the software. If you have previously determined
which quantities are controlled and have produced an attribute matrix relating attributes, use that
information to identify controlled quantities. You may also use information from systems engineering
specifications about the visible behavior of the system to determine which quantities should be treated
as controlled.

ExamqrLE: You determine from the information model for the FLMS (Figure 7-1) and the
attribute matrix (Table 7-5) that the following attributes can be denoted as controlled variables:

¢ Audible Alarm

¢ LowAlarm

e High Alarm

¢ Fuel Level Display
e ShutdownRelay

The relations in the model indicate that the system must provide the operator with information
represented by the first four attributes. The software controls the state of the ShutdownRelay to carry
out its primary duty as a safety-shutdown system. The software also has partial control over the fuel
flow because the state of the relay affects the pumps.

In most cases, you will be able to develop the clearest and simplest specification if you treat the device
state as controlled instead of the environmental quantities affected by the devices. For example, you
would treat the FLMS ShutdownRelay as controlled rather than the fuel flow. This is because the
states of the environmental quantities are often affected by factors outside the control of the software,
making the relation between monitored and controlled complicated and indirect. In contrast, the
system’s devices are typically directly under software control.

8.3.1.2 Identify Monitored Variables

In this activity, you identify which environmental quantities you denote as monitored variables and
create the corresponding monitored variable definitions.

Identifying the monitored variables is inherently an activity that must be revisited during several of
the CoRE specification activities. The choice of which quantities to treat as monitored is ultimately
driven by what information you will need to write the controlled variable functions and to track mode
changes. While you should make a preliminary identification of the monitored quantities as you
identify the controlled variables, you will revisit the activity as follows:

e As you determine which monitored quantities each controlled variable value depends on
during the Identify Environmental Variables activity

* As you determine which monitored quantities are needed to define the mode transitions in
the Detailed Behavior Specification activity

8-3

8. Prefiminary Behavior Specification

e As you complete the specifications of the controlled variable functions and terms in the
Detailed Behavior Specification activity

Rather than repeat the guidance for identifying and specifying the monitored variables in each of these
activities, this section gives an overview of the steps and products.

The goal during Preliminary Behavior Specification is to identify all the monitored variables needed
to complete the Establish Controlled Variable Function Domains activity. When you complete the
Preliminary Behavior Specification activity, you should have a definition for each monitored variable
you identified as needed for the controlled variable function domains.

ExaqpLe: In Figure 7-1, the following potential environmental variables can be monitored variables:
¢ Selftest Switch

¢ Reset Switch

* Power

¢ FuelLevel

¢ Fuel Flow Rate

The operator can set the first two switches, Power indicates whether the system has electrical power,
Fuel Level represents the level of fuel in the tank, and Fuel Fiow Rate is a measure of the rate of flow
of fuel into or out of the tank.

You will choose the monitored quantities based on the information you need to write the controlled
variable functions, identify undesired events, and track state changes as follows:

Controlled Variable Function Domains. After you have identified the set of controlled variables, you
must decide which quantities you will use to determine the required values of the controlled vari-
ables. As a first step, look at the attributes you identified in the Identify Environmental Variables
activity. An attribute that can be used to determine the required value of a controlled variable may
be modeled as a monitored variable. Use the application-specific relations (e.g., from the attrib-
ute matrix, ERD, or other material defining your information model) to identify attributes related
to each controlled variable. Remember that a variable can be both monitored and controlled.

e Undesired Events. The inability of the software to determine the value of a monitored quantity
or set the value of a controlled one is modeled as an undesired event. This includes the inability
to monitor the value to the required precision or set a controlled value within the required
tolerance. You create a monitored variable that models the undesired state and abstracts from
the set of possible failures (¢.g., the particulars of device failures, etc.).

ExamqpLES: The FLMS system requirements tell us that, if the FLMS system cannot determine
the current fuel level (i.e., the value of mon_Fuel_Level), the sofiware must detect the failure and
take the fail-safe approach of shutting down the pumps. You can denote this undesired event by
modeling the inability to determine with a monitored variable, mon_Fuel_Level_Unknown, de-
noting whether the system is able to determine the value of mon_Fuel_Level to the desired accu-
racy. Thus, you define two monitored quantities relating to the fuel level: mon_Fuel Level,

8. Preliminary Behavior Specification

denoting the level of fuel in the tank, and mon_Fuel_Level_Unknown, denoting the system’s
inability to determine that value.

Consider an operational flight program for an aircraft that must provide the altitude of the
aircraft in a pilot display. The required accuracy depends on factors like the current altitude
and which devices are functional. Create a monitored variable, mon_Altitude_Accuracy, to
denote the accuracy with which the software can determine the value of the monitored variable
mon_Altitude, and use it to specify the required accuracy of the altitude display.

® Mode Determination. As you identify and define the modes, you will define the events, causing
mode transitions in terms of changes in the monitored variables. You may add monitored
variables based on the need to track state changes.

You will often have a choice among quantities you can treat as monitored. For example, in the FLMS,
you might choose to denote as a monitored variable the fuel level in the tank, the fuel pressure, the
fuel volume, or even the fuel flow into and out of the tank to determine whether there is too much or
too little fuel in the tank. You must choose a quantity that is feasible to measure given the overall sys-
tem specification, your understanding of the hardware, and physical constraints. You then choose the
monitored quantity based on the audience for the specification and how easily you can express the
required behavior in terms of that quantity. The specification communicates best to its audience if you
choose quantities that mirror your audience’s understanding of the problem (e.g., choose a quantity
that the customer understands). For ease of use, choose the quantities that most directly model the
information you need to express the controlled variable behavior (i.e., those that resultin the simplest
functions).

As you develop the CoRE specification, you should remove redundant and unnecessary monitored
variables:

¢ If two variables denote the same quantity or if you can derive the value of one monitored
variable from another, the variables are redundant. Where one quantity can be determined
from another, you should consider creating a term to denote the derived quantity. In general,
it will be easier to manage change (e.g., if the purpose for the monitored variable changes or
goes away) if you remove such redundancies. For example, the quantities Fuel Flow Rate and
Fuel Level are redundant for the purposes of the FLMS because one can be calculated from
the other.

e A monitored quantity is unnecessary if it is never used to determine the value of a controlled
variable or to determine a mode or, equivalently, used in a term that serves one of these
purposes. Before you complete the specification, you should remove any unused variables.

8.3.1.3 Define Monitored and Controlled Variables

In this activity, you record definitions of variables to communicate your decisions precisely to other
engineers. If you have already created parts of these definitions in the Identify Environmental
Variables activity, you review and refine those decisions in this activity.

In creating a monitored or controlled variable, you are abstracting from the (usually physical) quantity
in the environment you must monitor or control. The variable represents the essential information
about the quantity for which you need to write the requirements while abstracting from incidental

8-5

8. Preliminary Behavior Specification

details. For example, you give a monitored variable only the precision required to set the controlled
variables to sufficient accuracy although the actual quantity has no limit on its precision.

Name and Type. Choose names that are commonly used to denote the environmental quantity.
Choose the type based on how the variable will be used; i.e., choose units that are convenient to
represent, easy to use to express the required values, and understandable to the document’s users.

Values. Use the NAT relation to determine the range of values a given quantity can assume (e.g.,
maximum and minimum fuel levels are determined by the configuration of the tank). Define the pos-
sible values of the variable within this range. For enumerated variables, list the values (see Table 8-1).
For numeric variables, record the lowest and highest values the variable can assume (see Table 8-2).
The range of values defines the range over which the software must be able to represent the monitored
or controlled variable; thus, you should define only the range that is actually needed. For example,
if very large values of altitude for a particular aircraft are never needed, do not include these values
in the range.

Table 8-1. Definition of Enumerated Environmental Variable

Name Type Values Physical Interpretation
con_Shutdown_Relay ENUMERATED closed The fuel pump shutdown relay is closed, and
the fuel pump is enabled.
open The fuel pump shutdown relay is open, and
the fuel pump is disabled.

Table 8-2. Definition of Numeric Environmental Variable

Name Type Values Precision Physical Interpretation

mon_Fuel Level LENGTH 0.0.300 05 Level of fuel in the tank, in centimeters (cm),
alongthe vertical axis on the left side of the tank,
5 cm from the front edge. The level is measured
with respect to the scale.

Precision. For a monitored variable, use the precision to express how accurately the software is
required to measure the actual quantity that the monitored variable represents. Precision may be im-
plicit in the range of values or it may be explicitly indicated (as in Table 8-2). If precision were not ex-
plicit in Table 8-2, the zeroes following the decimal points in the values specification of
mon_Fuel_Levelwould indicate that it has a precision of 0.1 cm (rather than 0.5 cm, which is indicated
by Precision in the table). The 0.5 cm precision expresses the requirement that, using the available
input resources over time, the software must be able to determine the actual fuel level to plus or minus
0.5 cm. You use the precision to help determine the adequacy of the inputs.

For a controlled variable, use the precision to express how accurately the software must be able to set
the actual quantity that the controlled variable represents. For example, if the controlled variable rep-
resents the angle on a flap and the precisionis 0.5 degree, this expresses the requirement that the soft-
ware be able to set the angle to within 0.5 degree. Use the precision of a controlled variable to help

8. Preliminary Behavior Specification

determine if you can satisfy the required tolerances on the controlled variable functions based on the
available output devices.

Physical Interpretation. Use the physical interpretation to describe the relationship between the
monitored or controlied variable and the quantity that the variable denotes. The physical interpreta-
tion allows you to relate the quantities used to write the specification to externally visible phenomena.
This allows the specification’s readers (€.g., customers, system engineers, testers) to correlate the re-
quirements described in the specification to the observable behavior of the software. Thus, the Physi-
cal Interpretation should be defined so it is clear to the specification’s readers exactly what quantity
the variable denotes. :

For enumerated variables, describe the physical interpretation of each possible value of the variable
(see Table 8-1). Where the variable models relative quantities (e.g., coordinate systems, angle of
attack, separation), use figures to give the precise meaning of the quantity being modeled.

8.3.1.4 Create the System Context Diagram

After you have identified the monitored and controlled variables, you can create the system context
diagram. An initial version of the diagram can be used as a visual guide to your specification’s moni-
tored and controlled quantities and is used in constructing and assessing thelevel-0 dependency graph.
The final context diagram that reflects your ultimate choices of monitored and controlled variables
is included in the final CoRE specification.

You create the context diagram for your software following instructions in Section 5.3.1. A context
diagram for the FLMS is shown in Appendix B, Figure B.1.

8.3.2 EsTABLISH CONTROLLED VARIABLE FUNCTION DOMAINS

The goal of this activity is to identify information you need to define the requirements for each controlled
variable. In particular, you identify the domain of the controlled variable function by identifying the set
of modes and the information about the monitored variables that determine the controlled variable’s val-
ue. You also identify whether the scheduling requirement for setting the controlled variable is periodic
or demand.

To perform this activity, you need the definitions you created in the Identify and Define Monitored
and Controlled Variables activity. You need the application-specific relations from the Identify Envi-
ronmental Variables activity. You also need the systems specification or other documentation defining
the originating requirements. The product of this activity is a controlled variable overview (e.g., like
in Figure 8-1). You use the products of this activity to refine your decisions about which monitored
variables and terms are needed and to make initial decisions about the number of mode machines
needed and the modes of each (in the Define Mode Machines activity). You also use this information
in Class Structuring to make packaging decisions. You refine the products of this activity to develop
a complete specification of the controlled variables functions and timing constraints in Detailed
Behavior Specification.

For each controlled variable, begin by looking at its definition. For this activity, the goal is to identify
the monitored variables, information about monitored variables, or modes that affect the required
value of the controlled variable. The product of this activity is a summary of the information needed
to specify each controlled variable captured in a form like the Controlled Variable Overview formin
Figure 8-1.

8-7

8 Preliminary Bohavior Specification

Controlled Variable Name: con_Low_Alarm

Monitored Variables:

mon_Fue]_Level Set when fuel level falls below
’ lower safety level threshold

mon_Fuel_Level_Fail Set when cannot determine level
mon_Selftest_Switch On during self-test

Modes:
mode_Test Value is a function of time in

test

mode_Operating Value is a function of fuel level
mode_BadLevDev Value is a function of mode

Scheduling Requirements: demand

Traceability:
()] Whean the level in the tank exceeds the upper or lower limits, an alarm is triggered.

) If the system is unable to determine the fuel level of the tank, the system shall
notify the operator of the condition and shut down the pump.

(6) A -capability to conduct system self-testing shall be provided.
(12) The system shall display fuel level and status alarms to the operator.

(13) Indications of low or high fuel levels (hazardous conditions) or unknown fuel
levels shall be presented to the operator.

(14) Wheanever there isa hazardous condition or an unknown, the system shall provide
audible and visual alarms.

Figure 8-1. Controlled Variable Overview for con_Low_Alarm

8.3.2.1 Identify Monitored Variables

In this activity, you identify the set of monitored variables and the information about those variables
that determine the value of the controlled variable. You use this information in Class Structuring to
identify the monitored variables and terms that must be defined in the class interfaces.

Look at the set of application-specific relations from the Identify Environmental Variables activity
that connect the controlled variable to other attributes. Those attributes that are modeled as moni-
tored variables are prime candidates. Where you identify a monitored variable as affecting the value
of a controlled variable, record what information about the variable is needed. You should find this
in the originating requirements for the affected controlled or monitored quantities. If the controlled
variable is a function of several monitored quantities or otherwise requires a more complex expression
to capture, you may choose to create some initial terms to capture the information needed. Add the
originating requirements or traceability to the controlled variable overview.

88

T

8. Preliminary Behavior Specification

You must also consider how the required behavior changes as the system state changes. To do this, you
need to iterate between this activity and identifying the system modes. Look for states where the set
of relevant monitored variables changes. Also look for failure states where your ability to set the
controlled variable is affected by undesired events. Where these undesired events are modeled as
monitored variables, they must be included in the domain.

You iterate between this activity and identifying the monitored variables as you identify places where
additional or different information is needed to develop the controlled variable functions.

Exaqpre: If you look at the stated requirements for the FLMS controlled variable
con_Low_Alarm, you see that the alarm is signaled when the fuel level is too low; therefore, it de-
pends on the value of the monitored variable mon_Fuel_Level. The specificinformation youneed
about the fuel level is whether the current level is below the minimum safe level. In examining the
attribute matrix, you also determine that the controlled variable value is a function of the FLMS
attribute Failure, which is modeled with the monitored variable mon_Fuel_Level_Fail.

8.3.2.2 Identify Modes

In this activity, you identify a set of modes that determine the value of the controlled variable. To
identify modes, you must look at the controlled variable’s definition and any information about se-
quencing or state behavior that affects the variable. For example, you must examine the system specifi-
cation to determine if the behavior depends on sequences of actions by the user; whether the system
is in an initiation, operation, or maintenance mode; and so on. In general, you are looking for points
at which changes in values of the monitored variables result in changes in the controlled variable func-
tion (i.c., points of discontinuity). You represent each such distinct state with a name and brief
description of the behavior that distinguishes the state.

You iterate between this activity and the Define Mode Machines activity (Section 8.3.3). Where
system mode machines have already been defined, you can express this partitioning of system state
in terms of the mode names. Otherwise, you use this information to derive the necessary modes and
mode machines.

ExaqpLe: The controlled variable function for con_Low_Alarm exhibits different behavior in
different states of the system. During normal operations, the alarm value is a function of the fuel
level. During a system self-test, however, the value is a function of the time since the self-test was
initiated. The alarm is also used to indicate failure of the level-measuring device; here, it is a
function of the state of the device.

In this example, the function is divided into three parts, depending on whether the systemisina
normal operating state or undergoing self-test or whether adevice has failed. These states or oper-
ating modes partition the domain of the controlled variable function because the system can be
in only one of these states at a time.

8.3.2.3 Identify Scheduling Requirements

You use the scheduling requirements to specify when the controlled variable value must be set.
Scheduling requirements are classified as periodic or demand: A scheduling requirement is periodic
only if the controlled variable is required to be set at certain intervals. For example, a value must be
supplied as part of a feedback control loop every 200 milliseconds. Classify the controlled variable as

8-9

demand if the setting of the controlled variable is triggered by the change in value of some monitored
quantity or mode.

Neither input nor output hardware characteristics determine whether a controlled variable is
periodic. For example, the fact that the monitor used to display the controlled variable con_Fuel_Lev-
el is updated at a certain frequency does not make its REQ relation periodic. The requirement is that
the value be provided to a certain accuracy and within a certain minimum delay. The designer must
work within the constraints of the refresh rate to ensure that these requirements are satisfied. The
periodic constraint in this case belongs to the OUT relation, not REQ.

8.3.3 DEFINE MODE MACHINES

The goal of this activity is to identify the mode machines needed to write the behavior specification.
To perform this activity, you need the controlled variable overviews, particularly the modes you identi-
fied in the Establish Controlled Variable Function Domains activity. You also need any available in-
formation from systems specification and related documents on the system modes and other
requirements based on system state or sequencing between activities.

The product of this activity is an initial mode machine specification specifying each distinct mode
machine needed, the set of modes in each machine, the set of possible mode transitions, and the initial
mode for each machine. You use this information in the Class Structuring activity to identify classes
to encapsulate the mode machines. You also use the information in the Detailed Behavior
Specification activity to complete the definitions of the controlled variable functions and to complete
the detailed specifications of the mode machines.

In a CoRE specification, mode machines are typically used to capture state information that is used
to specify a number of controlled variable functions. This means that, in developing the modes, you
need to consider the software states in the large (i.€., behavior during system initialization, test, main-
tenance, etc.) and that you will need to consider the effects of these state and state transitions across
a number of controlled variables. In particular, you use a mode machine where:

e The externally visible behavior (i.e., the values of one or more controlled variables) differs
from one mode to the next.

¢ The system changes behavior when changes in the values of monitored quantities (events) occur.

You typically iterate between defining the mode machines and identifying the controlled variable
function domains, beginning with a sketch of possible mode machines and refining that sketch as the
requirements are better understood. You may not completely identify the modes until you have
completed much of the Detailed Behavior Specification activity.

8.3.3.1 Identify Mode Machines

Each machine determines the state for a distinct set of the controlled variable functions. Use the mode
information from the controlled variable functions and your understanding of the distinct types of acti-
vities in the system to identify the different mode machines. The modes of 2 mode machine are related
by a common set of concerns. The following discussion provides some heuristics for finding
appropriate mode machines.

810

8. Preliminary Behavior Specification

ExaqpLE: An aircraft’s navigation system must periodically update the aircraft’s current
position, i.e., provide a new (presumably more accurate) latitude and longitude. There are several
ways of updating a position; the system chooses the appropriate method depending on the pilot’s
actions and the state of the aircraft. Each of these possibilities corresponds to a navigation update
mode; collectively, they form the Navigation_Update mode machine. Modes of the machine are
related in that the system performs the same basic service (updating position) in each. They differ
in the method of acquiring the new position. Similarly, a Weapons_Delivery mode machine would
be concerned with delivering the different weapons that the aircraft can carry. Each mode of the
machine corresponds to the delivery of a weapon or set of weapons with somewhat different
characteristics.

While there is no hard and fast procedure for deciding which mode machines are needed, the following
are common in embedded systems:

Represent Distinct System Functions. Most systems have a variety of states in addition to their
normal operation. These include states in which the system performs self-test, undergoes
maintenance, or operates under a variety of failure or degraded conditions. Modeling such
mutually exclusive system functions as modes allows you to simplify the REQ relations.

ExampLE: The self-test and failure states of the FLMS are examples.

Embody a Sequence of Activities. The system is the primary agent or one partner (€.g., in
cooperation with a person) in carrying out a sequence of activities directed toward some goal.
The value of the controlled variable depends on where you are in the sequence. Model the
steps of the sequence as the modes of 2 mode machine.

ExampLE: The FLMS is the primary agent in carrying out the safety shutdown sequence for
the shipboard fuel system. Roughly, the sequence is to monitor the fuel level for safety. When
an unsafe level is detected, sound the alarm and briefly wait to see if the fuel returns to a safe
level. If the fuel returns to a safe level, return to monitoring; otherwise, shut down the system.
The distinct steps of this activity are modeled with mode_Operating, mode_Hazard, and
mode_Shutdown. The behaviors of most of the controlled variables, including
con_Audible_Alarm, are defined as the modes of the shutdown procedure.

Model System Modes. The system specification may allocate certain modes to the software or
give the software responsibility for maintaining modes visible to the system’s user. For exam-
ple, it is common to organize the pilot’s view of an avionics system into different modes of op-
eration, such as the navigation modes or weapon modes. There will be a navigation mode
machine and a weapon mode machine. In such cases, it often makes sense to organize the re-
quirements according to these modes. Such an organization is consistent with the customer’s
view and simplifies the presentation.

8.3.3.2 Identify Modes and Transitions

For each mode machine you have identified, you must determine the machine’s modes, the set of
possible transitions, and the initial mode.

You choose the set of modes based on your understanding about the states of the system of interest
and the information you derived from defining the REQ relation domainsin the previous activity. You

8-11

8. Preliminary Behavior Specification

need to create a mode for each distinct set of required behaviors (i.e., as distinguished by points of
discontinuity in state-related behavior).

Create a name for the mode that corresponds to an external view of the state and concatenate with
mode_class_. For example, for an avionics system, you would choose mode names that correspond
to the pilot’s view of the operating modes of the aircraft. Thus, the mode_class_Attack might include
mode_Air_to_Air for air-to-air combat and mode_Air_to_Ground for an air-to-ground mission.

Select the initial mode by determining which operations must be performed on system initialization.
You may create an initialization mode to capture the unique required behavior during system
initialization.

Use the information you derived from defining the REQ relation domains and any sequencing
information from the system specification to identify the transitions.

The set of modes in a mode machine must be defined so that the system is always in exactly one mode
of the class. In this way, you ensure that the mode machine covers the domain of the REQ functions
(i.e., every partition corresponds to at least one mode of the machine). You must also make sure that
there is at least one path to every mode and there is at least one path out of every mode unless the
mode is a terminal state of the system.

ExampLE: In the example for con_Low_Alarm in Section 8.3.1, you identified three states
affecting the REQ relation. Further analysis shows that the other alarms in the FLMS
(con_High_Alarm and con_Audible_Alarm) also depend on the same states, i.e., whether the sys-
tem is operating normally, the level detection device has failed, or the system is in self-test. Be-
cause the system can only be in one of the operating modes, the test mode, or the failure mode
at a given time, you can model all of these states as the modes mode_Operating,
mode_BadLevDev, and mode_Test of a single mode machine.

Inaddition, there are distinct states that the system must track during the safety shutdown procedures.
These are states you would identify in writing the REQ relation for the controlled variable con_Shut-
down_Relay that is used to turn the pumps off during a system shutdown. In addition to the operating
state (mode_Operating) when the fuel level is within limits, there is a hazard notification state when
the fuel level is out of the safe range. When the fuel level stays out of the safe range for too long, the
system shuts down. These states can be modeled as two additional modes, mode_Hazard and
mode_Shutdown. This makes five modes needed to write the REQ functions for the FLMS
controlled variables see (Figure 8-2).

8.4 EVALUATION CRITERIA
Evaluate the products of this activity by answering the following questions:
¢ Is the definition of each of the monitored and controlled variables complete?

e Have you identified the monitored variables and modes that each controlled variable value
depends on?

e s the set of modes defined for each controlled variable domain consistent with the contents
of the mode machines?

8-12

8. Preliminary Behavior Specification

mode_Operating mode_Hazard

mode_BadLevDev e

mode_Test ' mode_Shutdown /

Figure 8-2. Using a Mode Transition Diagram to Represent mode_class_In_Operation

¢ Is sach mode machine well formed according to the criteria in Section 4.2.5?

¢ Do each of the mode machines satisfy the mode machine criteria that every state is reachable
and that every state has an exit unless it is a terminal state?

8.5 EXIT CRITERIA

You have completed this activity when you have produced the following work products and you can
answer “yes” to each of the questions in Section 8.4,

¢ Monitored and controlled variable definitions
¢ The system context diagram
* An overview for each controlled variable

¢ Initial mode machine definitions

8-13

This page intentionally left blank.

814

9. CLASS STRUCTURING

In the Class Structuring activity, you make and refine the packaging decisions for the specification.
In Preliminary Behavior Specification, you determined the basic structure of the behavioral model.
Youdefined the environmental variables and made preliminary decisions about the behavioral model,
including the controlled variable functions, scheduling requirements, modes, and terms. In Class
Structuring, you decide which parts of the behavior specification will be allocated to which classes. You
decide which parts of the behavior specification will be encapsulated by each class and which will
appear on the class interface based on your packaging goals.

As part of creating the class structure, you also make decisions about the encapsulation structure and
the generalization/specialization structure. You determine which classes will encapsulate the defini-
tions of other classes and define those internal class structures. You use information about
commonality in the requirements to create superclasses and define their subclasses.

Finally, you determine how the definition of each class depends on information defined in other
classes. Properties like ease of change, reusability, readability, and the impact of fuzzy requirements
are determined by the packaging decisions made in this activity.

9.1 GOALS

The detailed packaging goals of Class Structuring depend on the specific properties you want the
specification to have. Typical goals are to create a specification that is easy to read and understand,
supports reuse, supports independent development (e.g., for risk mitigation), minimizes the effect of
fuzzy requirements, and is stable with respect to likely changes. Of these, you will always be concerned
with controlling the effects of requirements changes. Your goal is to encapsulate parts of the specifica-
tion likely to change and define class interfaces that are unlikely to change. You must have a reason-
2*'v stable set of classes and class interfaces to be able to address other packaging concerns, such as
reuise cr independent development.

In this activity, you create the class structure based on the packaging goals. You allocate the behavioral
model toclasses and define the class interfaces to satisfy both the behavioral modeling goal of defining
the controlled variable functions and the packaging goals, such as ease of change.

If your overall packaging goals have not been decided as part of the system design, you should decide
now how important each of these goals is relative to specific parts of the requirements. For example,
the specification cannot be equally easy to change for all possible changes. You must decide which
changes are most important to accommodate and how likely each change is; this lets you set the more
practical goal of making a certain set of requirements easy to change. Similarly, you must decide which
parts of the requirements you are likely to reuse, where fuzzy requirements represent a problem that
must be controlied, and so on. Identifying these goals gives you a basis for making rational decisions
about how the requirements should be packaged.

91

Within the context of your specific packaging goals, you have the following overall aims:

* Create boundary classes that abstract from details about the software’s interface with the
environment and encapsulate variables and the REQ, IN, and OUT relations (boundary
classes).

» Create classes that provide mode information and encapsulate the detailed specifications of
mode machines.

¢ Create classes that encapsulate fuzzy or changeable requirements.
¢ Minimize the dependencies among classes.
You create the following work products in the Class Structuring activity:
¢ A definition of each class interface and its encapsulation structure

* One or more dependency graphs showing the dependency relation among classes

9.2 ENTRANCE CRITERIA

Before beginning Class Structuring, you should have completed the Preliminary Behavior
Specification activity and have the following work products:

s A definition for each monitored and controlled variable

» Overviews of the controlled variable function domains, including the monitored variables, the
modes needed, and the scheduling requirements

» Initial definitions of the system modes

e Any specification of packaging goals from systems engineering or prior CoRE activities,
— Alist of anticipated requirements changes

— Alist of fundamental stabilities and aspects of the requirements, problem, and system
not expecteu o change

9.3 CLASS STRUCTURING ACTIVITIES
Class Structuring comprises the following activities:

* Create Boundary Classes. Identify and create those classes that contain the definitions of the
monitored and controlled variables.

o Create Mode Classes. Create the classes that encapsulate mode machine definitions and
provide mode information.

e Create Term Classes. Identify and creare classes that provide any terms not provided by the
boundary and mode classes.

92

9. Class Structuring

* Define the Encapsulation Structure. Identify those classes that will encapsulate the definitions
of other classes and develop the encapsulated class structure.

* Define the Generalization/Specialization Structure. Identify common elements of the behavioral
model and package them as a superclasses. Create the superclass and subclass definitions.

» Establish Dependencies. Establish and document which classes use what information provided
by other classes and evaluate the class structure based on your packaging goals.

In practice, you typically begin developing the class structure by creating a dependency graph to
illustrate the effects of your packaging decisions. Begin by creating the boundary classes. First allocate
the monitored and controlled variables to classes, creating a partial dependency graph showing
boundary classes and the monitored and controlled variables. Work to connect the classes defining
controlled variables and their functions to the classes providing monitored variables, terms, and
modes. Add mode classes and show which classes depend on which modes. Add classes to encapsulate
groups of terms that you wish to package together, and show how other classes depend on those terms.
‘You have completed the Class Structuring activity when all of the elements of the behavioral model
have been allocated to some class and the dependency graph for each encapsulation structure shows
all of the dependencies between those classes.

Repeat the process of partitioning the behavioral model into classes and showing the dependencies
in increasing levels of detail as you decompose class definitions into further classes. You have com-
pleted the entire Class Structuring activity when the entire behavioral model is allocated to some part
of the class structure, when no class will be further decomposed, and when all of the dependencies have
been identified.

9.3.1 CREATE BOUNDARY CLASSES

In this activity, you create the boundary classes. A boundary class defines monitored and controlled
variables and potentially encapsulates the corresponding variables and the REQ, IN, and OUT rela-
tions. Define the boundary class interface to provide the definitions of monitored variables that are
used by other classes. Specify terms on the interface that provide information about the monitored
variables defined by the class.

This section provides heuristics that help guide your decisions about which parts of a boundary class
specification should be encapsulated and which parts should be defined on the interface.

9.3.1.1 Allocate Monitored and Controlled Variables

Begin creating the boundary classes by allocating the set of monitored and controlled variables among a
set of boundary classes. Allocate the variables to boundary classes by applying the following heuristics.

e Assign to the same class those variables whose definitions are likely to change together. Use

information about stabilities in the requirements to help identify variables likely to change
together.

* Assign to different classes those variables whose definitions are likely to change
independently. Use the list of likely changes to help you decide which variable definitions are
likely to change independently.

9-3

9.CbSlruusigL

e Where there are relationships between environmental variables you must preserve, allocate
these to the same class. For example, allocate variables to the same class where the variables
are part of a coherent abstraction.

If you created an information model in the Identify Environmental Variables activity, use the entities
and relationships in the model to help make decisions about whether particular variables should be
allocated to the same class. Examine cach of the entities in the model to determine whether the envi-
ronmental variables represented by the model’s attributes are related and should be part of the same
class. For example, consider whether an entity and its attributes represent a single coherent abstrac-
tion. Consider whether a set of monitored variables associated with an entity must be evaluated
together. Consider whether a set of controlled variables associated with an entity must be set together.

ExaqrLe: Consider the information model and list of likely changes developed in Section 7.
Table 7-4 lists the FLMS entities and attributes. For this example, the elements of the operator
interface are likely to change together because they are all handled by the same device. Create
class Operator and allocate variables mon_Reset_Switch, mon_Selftest Switch,
con_Low_Alarm, con_High_Alarm, and con_Audible_Alarm to it.

9.3.1.2 Define the Boundary Class Interface

Use the decisions you have made about allocating monitored variables to classes as well as
information about the behavioral model (e.g., from the Preliminary Behavior Specification activity)
to decide which monitored and controlled variables (if they are also treated as monitored) and terms
will be provided on the class interface. Summarize your decisions about what information the class
will provide in the Class Description (see Table 5-3).

Monitored and Controlled Variables. You may choose to encapsulate an environmental variable or
allow it to be used elsewhere in the specification. Use the preliminary behavior specification to deter-
mine whether you need the value of the variable (e.g., to define some controlled variable function)
or if you need information about the variable (e.g., a predicate on its value).

Provide the definition of a monitored variable ou the interface only if that variable is needed in the
definitions of other classes. Provide the definition of a controlled variable on the interface only if the
variable is both monitored and controlled by the software. If, instead, some property of the variable
or a set of variables is needed, define a term providing the needed information.

If the variable is encapsulated, its definition must appear only in the Encapsulated Information
section of the class specification. Otherwise, the definition appears in the Class Interface section.

ExampLE: Allocate the monitored variable mon_Fuel_Level to class_Fuel_Tank. Because the
monitored variable is needed by other classes (e.g., to describe the value function for
con_Level_Display), put the definition on the class interface (see Figure 9-1).

Terms. In this activity, you specify any terms provided by the boundary class. Provide terms on the
interface to abstract fromdetails of the environmental variables. Reduce complexity by defining terms
that provide only information about the variables that are actually needed to define other classes.
Manage change by defining terms that provide only the information that is not likely to change while
abstracting from details likely to change.

9-4

9. Class Structuriag

CLASS_FUEL_TANK

class_Fuel_Tank provides the information needed to determine the current fuel level; whether the fuel level is
above, below, or within safe limits; and whether the fuel level is within the hysteresis bounds. It encapsulates
the constants and rules for determining whether the fuel level is within safe or hysteresis limits. It also encapsu-
lates how the software can determine the values of mon_Fuel_Level and mon_Fuel_Level_Unknown.

CLASS INTERFACE
Environmental Variable Glossary
Name Type Values Precision Physical Interpretation

mon_Fuel_Level LENGTH 0..300. 05 Level of fuel in the tank, in centimeters
(cm), along the vertical axis on the left
side of the tank, 5 cm from the front
edge. The level is measured with respect
to the scale.

mon_Fuel Level Unknown BOOLEAN false The system is able to obtain the
information required to determine the
value of fuel level to the required
accuracy.

true The system is unable to obtain the
information required to determine the
value of fuel level to the required
accuracy.
Constants, Events, and Terms Other Classes Are Allowed to Use

Name
term_Fuel_Level_Range
term_Inside_Hys_Range

Environment-Imposed Behavior (NAT)
ldm;n_ l'_Level < const Max_Level Rate
mon_Time | - = -

—~0.4 cm < mon_Fuel_Level < 30.0cm

Figure 9-1. Partial Definitions of class_Fuel_Tank

Use the Preliminary Behavior Specification, the set of environmental variables defined by the class,
and your packaging constraints (e.g., list of likely changes) to decide which terms the class should pro-
vide on its interface. Use the Preliminary Behavior Specification to identify which terms are needed
that are a function of the variables defined by the class. Use the packaging constraints to decide what
information about those terms must be provided on the interface. Apply the following heuristics to
decide which terms you should create:

9.5

9. Class Structuring

Where the meaning of a monitored variable’s value rather than the value of the variable itself
is needed by other classes, create a term that captures the properties other classes need.

ExaqpLE: An avionics system monitors the weight-on-gear switch to determine whether the
aircraft is airborne. It is the information about the state of the aircraft that is needed by other
classes, so you should create a condition modeling whether the aircraft is airborne.

class_Operator defines a monitored variable that denotes the state of the reset switch
(mon_Reset_Switch). The software determines whether a reset has occurred based on how
long the switch is held down (at least 3 seconds). However, the essential information needed
to write the other classes is that areset has occurred, not the state of the switch. Abstract from
the arbitrary rules for determining that a reset has occurred, and provide the essential in-
formation by creating the event_Reset event that occurs when all of the conditions satisfying
a reset become true.

Where the actual quantities monitored are only a means for getting another value,
encapsulate the monitored quantities and define a term providing the needed value. For exam-
ple, this can occur when the required quantities are relative measures among variables. Insuch
cases, provide the needed value on the interface and encapsulate the monitored vanables and
other information needed to derive the value.

ExamqpLE: For an aircraft collision avoidance system, the system typically monitors the
current positions of the host aircraft and any threat aircraft. Which aircraft represents a threat
depends on its relative position, heading, and velocity. The interface for a class that
encapsulates the aircraft position might provide information for such relative measures.

Where there are arbitrary constraints or constants that add complexity or are likely to change,
define a term that captures the essential information about the environmental quantities and
encapsulate the details.

ExamprLe: class_Fuel Tank defines the monitored variables mon_Fuel Level and
mon_Fuel_Level_Unknown. You have determined that the current operating mode of the sys-
tem depends on the state of the fuel level. In particular, it depends on whether the fuel level
is too low, too high, or within safe limits. The operating mode also depends on whether the
fuel level is within certain hysteresis limits (to ensure stable transitions).

Other classes must use information about whether the fuel level is within safe limits or within
the hysteresis limits to determine the current mode or sound an alarm. However, other classes
need not use or depend on the specific constants that determine what the limits are.

The definition of class_Fuel_Tank addresses these packaging concerns by providing twoterms
on the interface: term_Fuel_Level_Range, an expression denoting whether the current fuel
level is too low, too high, or within limits, and term_Inside_Hys_Range, a predicate indicating
whether the current fuel level is within the hysteresis bounds (see Figure 9-1). The definitions
of the terms and the related constants are given in the encapsulated information for the class
(See Appendix B, Section B.4).

9-6

9. Class Structuring

9.3.2 CREATE MODE CLASSES

In this activity, you create the classes that encapsulate mode machines and create the interface for
each mode machine. The class interface provides information about the current mode and mode tran-
sitions that can be used to define the behavioral model. It encapsulates the detailed definition of the
mode machine, such as which events result in which specific transitions.

Each mode machine must be allocated to one mode class. Create the mode classes based ori the mode
machines you identified in the Preliminary Behavior Specification activity.

Define a mode class interface by providing the information that other classes are allowed to use about
the mode machine. You have few decisions to make about the class interface because the class
definition is constrained to provide only certain mode information as follows:

¢ All of the modes of the class must be defined on the interface (to support completeness
checking)

* The events ENTERED(m) and EXITED(m) are defined for each mode m on the interface
* The condition INMODE(m) is defined for each mode m on the interface

To define the interface, use’the form provided in Section 5-3. For example, you would create a class
to encapsulate the definition of the mode machine for the FLMS as shown in Figure 9-2. The interface
definition provides the names of the modes of the mode machine for the FLMS (see Section 8.3.3.1).

CLASS_IN_OPERATION

class_In_Operation defines the FLMS modes. It encapsulates the rules for determining the current mode and
the events that trigger transitions among the modes.

CLASS INTERFACE
Modes Other Classes Are Allowed to Use

Mode
mode_Operating
mode_Hazard
mode_Shutdown
mode_Test
mode_BadLevDev

Constants, Events, and Terms Other Classes Are Allowed to Use

Name
term_Test_Time

Figure 9-2. Mode Class Interface Example
9.3.3 CREATE TERM CLASSES

In this activity, you create any additional classes needed to provide terms that are not provided by the
boundary classes. Create a class that defines additional terms from the monitored variables or other
terms under the following circumstances:

9-7

9. Class Structuring

¢ The information needed is an expression of two or more monitored variables defined in
different boundary classes or used to define the controlled variable functions or modes in two
or more classes.

e Some subset of the requirements represents a distinct concern relative to the packaging goals.

» The specification is simpler if you define a class that abstracts from the details of some part
of the requirements.

Use the controlled variable overviews, boundary classes, change list, and any additional information
from the system specification to identify shared information that should be provided by a term class.
Ingeneral, the same criteria that govern the creation of terms on boundary class interfaces also govern
the creation of term class interfaces.

ExaMPLE: An aircraft collision avoidance system monitors the position of other aircraft relative to
the host, determines the threat of collision for each, and provides a visual display of the current threat
status to the pilot. The aircraft that represent a potential threat are classified acocording to a set of rules
determined by the Federal Aviation Administration. Because these rules represent data that indepen-
dently changes from the rest of the specification and the required behavior of the display depends only
onthe threat class (not on what determines the rules that determine the threat class), the specification
is clearer and easier to change if the Federal Aviation Administration rules are encapsulatedin a term
class.

9.3.4 DEFINE THE ENCAPSULATION STRUCTURE

In this activity, you identify and define encapsulated classes. Make a first pass at defining the
encapsulation structure following Preliminary Behavior Specification based on the information
allocated to each class. Revisit this activity during the subsequent Detailed Behavior Specification
activity as the detailed requirements are better understood.

Define encapsulated classes when doing so addresses your packaging goals. You create encapsulated
classes following the same guidelines and heuristics by which you created the higher level (in the en-
capsulation hierarchy) class structure, e.g., if additional organization into classes helps reduce
complexity, manage change, and so on.

If you developed an information model, examine the model for any is-part-of relations. If there are
requirements that apply to the whole structure rather than individually to the parts, consider defining
the structure as a class and the components as encapsulated classes.

You should stop decomposing into encapsulated classes when each class satisfies your packaging
goals, each class is understandable, the information in a class is related, the information in a class is
likely to change together, and so on.

ExampLE: class_Operator encapsulates how the FLMS is required to interact with the operator
and the mechanisms available to the software to support the required interactions. Within
class_Operator, the outputs to the operator and the inputs from the operator represent parts of
the specification that can be usefully represented as two encapsulated classes.

The controlled variables (con_Audible_Alarm, con_High_Alarm, etc.) sent to the operator satisfy
CoRE’s heuristics for class formation in several ways. First, all of the outputs use the same hardware

9-8

9. Class Structuring

device so they share parts of the OUT relation. Second, because they share the same hardware, they
are also likely to change together if the display hardware changes. Finally, they are temporally related
because the alarms and displays must be updated to reflect the conditions the alarms are signaling.

The monitored variables from the operator (mon_Selftest_Switch and mon_Reset_Switch) do not
share hardware with the controlled variables, are likely to change independently of those variables,
and have some reasonable expectation of changing together. Thus, the switches should be defined in
a distinct class.

Create the interface for class_Operator by showing which variables and terms are defined by the
encapsulated classes and exported by class_Operator. These are the events event_Selftest and
event_Reset. Create the encapsulated information by providing the definitions of the two encapsu-
lated classes and the dependency graph of the encapsulated classes. The interface and dependency
graph are shown in Figure 9-3. The definitions of class_Operator_Communication and class_Switch
classes are given in Appendix A.

CLASS_OPERATOR

class_Operator encapsulates how the FLMS is required to interact with the operator and the
mechanisms available to the software to support the required interactions.

CLASS INTERFACE
Constants, Events, and Terms Other Classes Are Allowed to Use

event_Selftest

event_Reset

ENCAPSULATED INFORMATION
Classes Defined
termn_Test Time e
— con_Audible Alarm
mode_class_In_Operation / N = = -

High Al
term_Fuel_Level Range]class Operator_ oo High Alarm
Communication | °08_Low_Alarm
mon_Fuel_Level 1

- con_Level Display _
mon_Time N\ / Y .

mon_Selftest_Switch /\ event Selftest
O ——————————

mon_Reset_Switch class_Switch event Reset

P

Figure 9-3. Dependency Graph for Operator Interface

9.3.5 DEFINE THE GENERALIZATION/SPECIALIZATION STRUCTURE

If you have identified cases where two or more classes have common requirements, you may choose
to represent the commonality by creating a superclass. In CoRE, you use the superclass mechanism

9-9

9. Class Structuring

for both representing requirements more compactly and for making the commonality in requirements
explicit to others using the requirements (e.g., the designers). This means that you should use the su-
perclass mechanism only if the commonality embodied in the superclass represents an essential part

of the problem you do not expect to change. Conversely, you should not use it to represent incidental
or accidental commonality.

If you developed an information model, you may have identified potential superclass or subclass
relationships in the form of is-a relations. Otherwise, use information on common parts of the specifi-
cation developed in this and previous activities to identify potential superclass or subclass
relationships.

ExampLe: The RTCPs and CDU share all the display and much of their data entry characteristics.
Further, these characteristics are essential to the problem and potentially useful to future design-
ers as discussed in Section S. You choose to create a superclass_Radio_Display to represent the
parts of the behavior specification common to the RTCPs and CDU. You identify the following
as common elements:

* mon_Radio_Selection is a monitored variable assuming one of six values (UHF1, UHF2,
VHF1, VHF2, HF1, HF2) indicating which radio the pilot has selected.

* mon_Scratchpad_String is an alphanumeric string entered into the scratchpad.
¢ con_Scratchpad can clear or blink the scratchpad contents.
* con_Display_Line displays the current frequency of each radio.

Define each of these variables on the interface of superclass_Radio_Display. Then define two
subclasses as follows:

* class_RTCP adds no additional information, but its definition constrains the type of

mon_Scratchpad_String to be numeric because there are no alphabetic keys on the
RTCP.

¢ class_CDU adds two monitored variables to represent a preset frequency and a

mnemonic. It also adds two terms representing a valid preset and a valid mnemonic being
received.

You then define class_CDU as shown in Figure 9-4.

9.3.6 EsTaBLISH DEPENDENCIES

In this activity, you establish how classes depend on one another. In CoRE, a class X depends on class
Y if X uses a term provided on the interface of Y in its definition. The number and kind (i.e., which
modes and terms a class depends on) of dependencies help you determine how well the class structure
meets packaging goals like ease of change.

9-10

9. Class Structuring

CLASS_CDU

CLASS DESCRIPTION

class_CDU isa subclass of superclass_Radio_Display. It encapsulates the rules for entering radio frequencies
as presets and mnemonics and for determining if a preset or mnemonic is valid. It provides conditions denoting
a preset or mnemonic selected, the radio selected, and the string entered.

CLass INTERFACE

Defines: term_Valid_Preset
term_Valid_Mnemonic
mon_Scratchpad_String.CDU
mon_Radio_Selection.CDU

ENCAPSULATED INFORMATION

Dependency Graph
mon_Scratchpad_String mon_Scratchpad_String .
mon_Radio_Selection superclass_ \mon_RadiO_Selection .

™\ Radio_Display lcon_Display_Line
/ con_Scratchpad

mon_Radio|Selection

mon_Preset term_Valid_Preset
class_Preset/ = = >
1 Mnemonic term_Valid_Mnemonic

mon_Mnemonic

Figure 9-4. Generalization/Specialization Example

You are likely to find additional dependencies or change existing ones during Detailed Behavior
Specification. For example, you may find that you cannot write the functions for a particular controlled
variable without using an additional monitored variable. However, to understand the implications of
your class structuring decisions and evaluate those decisions against the packaging goals, you need an
initial set of dependencies.

The goal of this activity is to identify and record the dependencies between the classes. To perform
this activity, you need the class definitions. The product of this activity is the dependency graphs that
show exactly which class uses which environmental variable, term, event, or mode machine. Create
a dependency graph for each distinct part of the Encapsulation Structure; i.e., each set of classes that
are encapsulated by the same parent class will have a distinct dependency graph.

In an idealized view of the process, you create the dependency graphs after defining the class
interfaces because you cannot complete the graphs until the class specifications are complete. In

9-11

9. Class Structuring

practice, you begin constructing the dependency graph in parallel with choosing the classes and
defining their interfaces because the graph illustrates the consequences of your choices and helps
guide subsequent decisions.

You create a dependency graph for the classes you have defined. To create a dependency graph,
examine each class in turn. Determine which of the terms defined in other classes are used to define
the current class’s interface or is needed to define its encapsulated information. Use the dependency
graph notation defined in Section 5.3.2.

ExamqpLE: Figure 9-5 shows a partial dependency graph for the FLMS. Because the mode
machine in class_In_Operation changes modes if a self-test occurs, it uses event_Selftest in the
definition of the mode transition table. Thus, class_In_Operation depends on class_Operator.
Draw an arrow from the class_Operator bubble to the class_in_Operation bubble and label it
event_Selftest.

Similarly, the modes defined by class_In_Operation are used to define the controlled variable
functions in both class_Operator and class_Pump. Create a dependency from the
class_In_Operation to each class using the mode machine.

You have finished establishing dependencies when there is a dependency for every term that is defined
by one class and used by another. In practice, the exact dependencies between classes become better
understood and change during subsequent development, especially in the Detailed Behavior Specifi-
cation activity. You need to iterate the entire development process to identify the dependencies fully.

9.4 EVALUATION CRITERIA

On each iteration and upon finishing the specification, evaluate the packaging and interface creation

decisions against your objectives.

9.4.1 EVALUATING CLASSES

Evaluate the classes chosen and the class interfaces against both general criteria and the specific
packaging goals established for your specification. General criteria to consider are:

o Appropriate Abstraction. Each of the class interfaces you create provides information used to
define other classes (e.g., to write the controlled variable functions). The interface is consid-
ered a good one if it provides an abstract representation of the information definedin the class
that is easy to understand and use. Verify that the names used clearly indicate the content of
each term, that each term is well defined, and that the interface is as simple as possible while
providing the information needed by other classes. Check the number of dependencies origi-
nating in the class; if the number is large, look for a simpler interface or consider creating an
additional class.

* Appropriate Encapsulation. Evaluate each class to ensure that the division of the requirements
into classes provides appropriate separation of concerns. Verify that the class description
makes clear what information the class encapsulates. Verify that the class interface does not
provide information that should be encapsulated; i.e., check that each piece of information
provided by the interface is not part of the information the class should encapsulate.

9-12

9. Class Structuring

con_Shutdown_Relay

mon_Selftest_Switch
mon_Fuel_Level_Unknown - -

mon_Reset_Switch

mon_Fuel_Level_Unknown

mon_Fuel_Level j class_Fuel_Tank

term_Fuel_Level Range

mon_Fuel_Level

Figure 9-5. Fuel Level Monitoring System Dependency Graph

Each class should encapsulate related information. Verify that the requirements ina class can
change together. If they change independently, consider creating an additional class.

You must also evaluate the class structure against any specific packaging goals you established. For
example:

* Change Management. For each requirement considered likely to change, trace the requirement
to the defining class. Verify that the requirement is encapsulated by the class. If a requirement
that is likely to change is on a class interface, reexamine the class interface to see if it can be
hidden.

* Fuzzy Requirements. Limit the impact of fuzzy requirements by encapsulating the fuzzy
requirement in a class. For such cases, verify that any fuzzy requirements are encapsulated by
a class.

9-13

9. Class Structuring

Reuse. The class is typically the atomic unit of reusability in a CoRE specification. Verify that
each reusable component is encompassed by a class definition and that the class provides an
appropriate abstraction.

Risk Mitigation. Verify that each set of related requirements considered risky is allocated to
adistinct class and that the class interface is well defined. You can then proceed with the design
and implementation of that class, independent of the other classes, until the risk issues are
sufficiently resolved.

9.4.2 EVALUATING CLASS DEPENDENCIES

The dependency graph allows you to evaluate the requirements architecture against the packaging
goals. For example, you must determine whether the structure easily accommodates the changes you
identified as likely.

Closure. Use the preliminary behavioral model and the dependency graph to determine
whether you have identified all the information needed to write the controlied variable
functions.

— Evaluate each boundary class that defines a controlled variable to determine if the
monitored variables, terms, and modes used (as shown by the dependency graph) are
adequate to define the controlled variable functions (as identified in Preliminary
Behavior Specification).

—~ Examine the classes that define modes or terms used by the boundary classes. For each
class, ensure that the terms or modes provided by the object are defined using the
information used by the object (as shown by the dependency graph).

Change Management. Tracing dependencies allows you to analyze the effect of changes to a
class interface on other parts of the requirements. For each change that you identify that
appears on a class interface, trace the dependencies and determine which other classes will
be affected by the change. If there are a relatively large number of dependencies on these or
any other interface requirements, consider altering the interface to reduce the dependencies.

9.5 EXIT CRITERIA

Class Structuring is complete when:

All the elements of the behavioral model (i.c., all the variables and relations) have been
allocated to some class.

Classes and class interfaces have been defined.
The Encapsulation Structure is defined.
The Generalization/Specialization Structure is defined.

All the dependencies are shown on the dependency graphs.

9-14

R |

10. DETAILED BEHAVIOR SPECIFICATION

In the Detailed Behavior Specification activity, you complete the specification of the behavioral
model relations except for IN and OUT. You use the controlled variable overviews you developed in
Preliminary Behavior Specification and the class definitions you developed in Class Structuring to
perform the following activities:

e Develop a detailed specification of the value function for each controlled variable.

e Develop a detailed specification of the scheduling, timing, and tolerance constraints for each
controlled variable.

e Complete the specification of each mode machine.
e Revisit the class structuring decisions.

When you have finished this activity, you will have completed the definition of the encapsulated
information for each class except for the definitions of the input and output variables and the IN and
OUT relations (the subject of Section 11).

10.1 GOALS
The goal of this activity is to complete the behavioral model specification. This includes:
* A complete specification of required behavior for each controlled variable as follows:
— A specification of the controlled variable value function that is complete and consistent
— A specification of the controlled variable’s initial value
— A specification of the controlled variable function’s timing and value tolerances
— A specification of the periodic or demand scheduling parameters
e A complete speciiicaiion of each mode class |

e Asetof class definitions, including interface and encapsulated information, that is consistent
with the information needed to complete the behavioral model for each class

When you finish the Detailed Behavior Specification activity, you have a complete description of the
externally visible behavior of the software.

10.2 ENTRANCE CRITERIA
To perform Detailed Behavior Specification, you need the following products:

101

10. Detailed Behavior Specification

¢ Monitored variable definitions from the class interfaces
e Controlled variable definitions and overviews

e Term definitions from the class interfaces

e Modes from mode class interfaces

e NAT relation information from the information model, system requirements, and domain
knowledge

¢ . Dependency graphs
e Timing and scheduling requirements from the system requirements

103 ACTIVITIES

In Detailed Behavior Specification, you revisit and refine the class definitions. The major focus of this
activity is on completing the detailed specification of the controlled variable functions and timing
constraints and the detailed specification of the mode machines. The subactivities are as follows:

o Define Controlled Variable Behavior. Refine the definition of each boundary class that defines
the behavior of a controlled variable. For each controlled variable, complete the behavioral
specification. Define the value function, the timing and tolerance constraints, the scheduling
parameters, and initial value. Define any relevant NAT constraints.

® Refine Mode Classes. Complete the mode machine definition by defining the encapsulated
information for each mode class. Identify the events that result in each mode transition.

® Refine Remaining Classes. Complete the definitions of the encapsulated parts of remaining classes.

e Revisit Class Structuring. Where completing the detailed definitions of the classes requires
changing Class Structuring decisions, revisit the appropriate Class Structuring activity.

10.4 DEFINE CONTROLLED VARIABLE BEHAVIOR

The goal of this activity is to complete the detailed specification of the functions and timing constraints
for each controlled variable. You do this by refining the definition of each boundary class that defines
one or more controlled variables. In Preliminary Behavior Specification, you identified the informa-
tion needed to define the controlled variable functions. In Class Structuring, you developed the class
interfaces to provide the monitored variables, modes, and terms needed. At this point, you should
have sufficient information to develop the detailed specification for each leaf class defining a con-
trolled variable independently; i.e., you can divide this activity into separate work assignments for
each class. Thus, the following discussion is written in terms of completing the detailed controlled
variable specification for a single class, one variable at a time.

To perform this activity, you need the definitions of all monitored variables, modes, or terms on which
the controlled variable depends. Use the Controlled Variable Overview from the Preliminary Behav-
ior Specification to identify these quantities. Use the dependency graphs to identify which classes

102

10. Detailcd Behavior Specification

provide needed information on their interfaces. The class definitions then provide the detailed
information you can use about each monitored variable, mode, or term. You will also need any timing
constraints applying to the controlled variable from the system requirements and any NAT constraints
from system requirements or other domain information.

The process of completing the controlled variable behavior specification is guided by the detailed behavior
specification template (see Section 4.4). You complete the specification by systematically filling out the
template where it applies to the controlled variable being defined. This activity is compiete when all the
relevant parts of the template have been filled out. The following sections provide guidance on filling out
the sections of the controlled variable form for both periodic and demand controlled variables.

10.4.1 SpecIFY INITIAL VALUE

In this activity, you identify and define the initial value that the software must provide for the
controlled variable. You specify the value by filling out the Initial Value section as follows:

¢ None. No particular initial value is required.
* Value function. Initial value is defined by the controlled variable function.

e In:ial value expression and initiating event. Use these forms if the initial value must be set
based on a certain event (e.g., at system generation, system initialization, or at run-time) and
the assignment is not covered by the controlled variable function.

— Initial value expression is an expression giving the initial value to be assigned to the
controlled variable.

— The initiating event is the event at which the value must be assigned (e.g., system
initialization).

10.4.2 DEFINE SUSTAINING CONDITIONS

The sustaining conditions give the conditions under which the controlled variable function remains
defined after initialization (i.e., the conditions under which it makes sense to evaluate the function
and set the controlled variable). For certain kinds of controlled variables, the entity being controlled
exists only if other systems are operating correctly. For instance, displayed values can be set only as
long as the display subsystem is operating properly. Under the sustaining condition, you list any
~ conditions that must be true for the controlled variable to be able to assume its required values.

To identify the sustaining conditions, examine the quantities needed to define the controlled variable
functions as well as any conditions relevant to setting the controlled variable itself and create the
sustaining conditions as follows:

e Any undesired events that prohibit getting the values of the monitored quantities or related
terms

e Any modes (e.g., failure modes) in which the function cannot be evaluated or the controlled
variable cannot be set

10-3

10. Detailed Behavior Specification

* Any undesired events indicating that the controlled variable cannot be set
Where the variable always has a value, the sustaining condition is given the value true.

Exaqrrg: The system monitors the state of a display and defines a condition that is true if the display
has failed, called mon_Display_Failure. The controlled variable con_Altitude_Dispiay cannot be set
if the display has failed; thus, NOT mon_Display Failure is a sustaining condition.

10.4.3 SprecIFY DEMAND BEHAVIOR

Inthis activity, you create the detailed specification for a controlied variable with a demandscheduling
constraint. Use the controlled variable overview to determine the variable’s scheduling constraint.

10.4.3.1 Specify Demand Functions

In this activity, you create the function specifying the ideal value for the controlled variable. Demand
functions are characterized by the need to respond to changes in the environmental quantities or
modes. Use an event table to represent the value function.

Use the table format (see Section 4.2.6.2) to guide creation of the function and capture its
specification. You analyze the function to determine how the behavior depends on the modes. You
create one row of the event table for each set of modes for which the behavior of the function is the
same.

Unless you have already identified all of the distinct behaviors, it is easiest to begin by creating one
row for each mode of the relevant mode machine. As you begin to fill in the rows, you can combine
any rows that contain identical conditions.

You create one column in the table for each distinct expression needed to define the value of the
controlled variable. If the controlled variable is an enumerated type, create a column for each distinct
value. If the controlled variable value is determined by a set of expressions, create a column for each
such expression. Put the expression at the bottom of the column.

ExampLE: Inthe FLMS, the controlled variable con_Audible_Alarm must be set; i.e., the alarm
must be sounded when certain events occur, such as the fuel level going beyond safe limits. You
represent the function using an event table as shown in Table 10-1. You create a row for each of
the modes of the FLMS and, because con_Audible_Alarm is an enumerated type, one column for
each possible value of the variable.

Visit each cell in the event table row by row. For a given cell, you provide the event that should cause
the controlled variable to take on the corresponding value in the column for the modes in that row.
Use information about the mode transitions and the assumptions on the mode class interface to help
determine which events are needed. If there is more than one such event, list each event connected
by an OR operator. As you complete each row, verify that only one of the events in that row can occur
at any time whenever the system is in one of the modes in that row.

104

10. Detailed Behavior Specification

Table 10-1. Event Table Example (Incomplete)

Events

mode_Operating

mode Hazard

mode_Shutdown

mode_Test

mode_BadLevDev

con_Audible_Alarm

silent

ExaqrLe: Begin filling in the table, starting with mode_Operating (see Table 10-2). In
mode_Operating, the alarm must be sounded if the fuel level goes out of safe limits so the corre-
sponding event is added to the column with the value sound. The alarm is turned off (if it is on)
upon entry to the mode so the event ENTERED is put in the silent column. In mode_Shutdown,
the system never changes the state of the alarm, so an X is entered in each column. In mode test,
the stimulating events are based on the time in test. The alarm is turned on upon entry to test
mode, then turned off after 4 seconds. These events are entered in the table.

Table 10-2. Event Table Example (Completed)

Mode Events

mode_Operating X ENTERED

mode_Hazard ENTERED OR @T(term_Fuel_Level Range =
@F(term_Fuel_Level Range = withinlimits) | withinlimits)

mode_Shutdown X X

mode_Test @T(term_Test_Time > 0 ms) @T(term_Test_Time > 4000 ms)

mode_BadLevDev |ENTERED X

con_Aundible_Alarm |sound silent

To support readability of the functions, you provide additional textual overview of the specified
behavior as necessary. However, it is the function specification that represents the binding
requirement in case of conflict.

10.4.3.2 Demand Scheduling and Timing Constraints

In this activity, you specify the timing constraints for the controlled variable function. The timing
constraints define the range of acceptable behavior in time. For demand variables, this is expressed

10-5

10. Detailed Bebavior Specification

by defining the interval over which the software is allowed to set the controlled variable following an
initiating event. You also specify any NAT constraints, such as the minimum interval between events
of interest.

To perform this activity, you use scheduling and timing information from the system requirements as
well as information about the environmental quantities from systems requirements, domain experts,
hardware constraints, and any other sources describing the timing characteristics of the environmen-
tal events that affect the controlled variable. You have completed this activity when you have filled
out all the relevant parts of the timing and scheduling portion of the behavior specification template
(Section 4.4).

The ability of the software to respond to every event (i.e., satisfy the ideal behavior defined by the
value function) may depend on the timing characteristics of the initiating events. As part of the NAT
relation, you must record any assumptions about how frequently initiating events can occur and what
the minimum interval between occurrences is. If events can occur closely enough together (e.g. anoth-
er event can occur before the completion deadline corresponding to the previous event), you must
specify the tolerance in behavior. For example, specify whether the software must respond to every
event or is allowed to ignore events under certain circumstances.

10.4.4 SPECIFYING PERIODIC BEHAVIOR

In this activity, you create the detailed specification for a controlled variable with a periodic
scheduling constraint. Use the controlled variable overview to determine the variable’s scheduling
constraint.

10.4.4.1 Specify Periodic Functions

The value function for a controlled variable with a periodic timing constraint defines the values of the
controlled variable in terms of the prevailing conditions when the periodic timing event occurs. Use
a condition table or selector table (see Section 4.2.6) to guide creation of the function and capture the
resuits.

Analyze the function to determine how the behavior depends on the modes. In particular, you must.
determine each distinct set of modes where the value of the controlled variable depends on different
conditions. You create one row of the condition table for each set of modes for which the behavior of the
function is the same, and enter the names of the modes in that row.

ExampLE: 'The FLMS must provide status information to a secondary status and trend recording
system. If the fuel level is within safe limits, the current fuel level is reported. If the fuel level is
out of safe limits, a special value indicating whether the level is low or high is provided. The status
information must be provided every 0.5 second in mode_Operating, mode_Hazard, and
mode_Shutdown. It is not provided in mode_Test or mode_BadLevDev.

Unless you have already identified all the distinct behaviors, it is easiest to begin by creating one row
for each mode of the relevant mode machine. As you begin to fill in the rows, you can combine any
rows that contain identical conditions.

You create one column in the table for each distinct expression needed to define the value of the
controlled variable. If the controlled variable is an enumerated type, create a column for each distinct

10-6

10. Detailed Behavior Specification

value. If the controlled variable value is determined by a set of expressions, create a column for each
such expression. Put the expression at the bottom of the column.

ExamrLe: Create one row for mode_Operating, mode_Hazard, and mode_Shutdown because
the behavior is the same in each. Create another row for mode_Test or mode_BadLevDev.
Create a column in the table for each of the possible values reported, the fuel level, low, and high
(see Table 10-3).

Thble 10-3. Initial Condition Table Example (Incomplete)

Mode Condition

mode_Operating
mode_Hazard
mode_Shutdown

mode_Test
mode_BadLevDev

con_Status mon_Fuel_Level low high

Finally, visit each cell in the condition table row by row. Fill each cell with a condition that must hold
in the mode defined by the row for the variable to be assigned the value at the bottom of the column.
As you complete each row, verify that exactly one of the conditions in a row must be true whenever
the system is in one of the modcs in that row.

ExamrLE: For mode_Operating, mode_Hazard, and mode_Shutdown, the controlled variable
is determined by the value of mon_Fuel_Level if the fuel level is within range. Thus, you fill the
corresponding cell with the condition term_Fuel_Level Range = withinlimits. The remaining
cells in the row correspond to the level being low or high. The function is not defined in mode_Test
or mode_BadLevDeyv, so place an X in these cells (see Table 10-4).

Table 10-4. Condition Table Example (Completed)

Mode Condition
mode_Operating term_ term_ term_
mode_Hazard Fuel Level Range = |Fuel_Level Range = Fuel_Level_Range =
mode_Shutdown withinlimits levellow "~ |levelhigh
mode_Test X X X

mode_BadLevDev

con_Status mon_Fuel_Level low high

The condition table is easier to check if you use conditions whose consistency is obvious from their
very form. For example, conditions of the form A and NOT A clearly exclude one another and add up
to true.

10-7

10. Detailed Behavior Specification

10.4.4.2 Specify Periodic Scheduling and Timing

In this activity, you specify the scheduling and timing constraints for a periodic controlled variable
function. To perform this activity, you use scheduling and timing information from the system specifi-
cation as well as information about the environmental quantities from systems specifications, domain
experts, hardware constraints, and any other sources describing the controlled variable’s periodic tim-
ing constraints. You have completed this activity when you have filled out all the relevant parts of the
timing and scheduling portion of the behavior specification template (Section 4.4). Use the timing and
scheduling portions of the template to guide identification of the timing and scheduling quantities.

For a periodically produced value, use the initiation delay and completion deadline to express the
allowed variation between the exact interval given by the period and when the controlled variable’s
value may be changed. In general, there will be a range of times in a period that is acceptable; this
range is expressed by giving the initiation delay and completion deadline.

ExaqpLE: If you give a period of 500 milliseconds, an initiation delay of 50 milliseconds, and a
completion deadline of 400 milliseconds, then the software is required to update the controlled
variable in the interval between S0 and 400 milliseconds after the start of the S00-millisecond
period.

Some variables with periodic constraints are set only under certain conditions. For example, where
the user chooses what is currently displayed on a screen, the system only needs to update the displayed
values. If this information is not captured in the modes, use the initiation and termination section to
define when the values of the controlled variable need to be updated and when they do not. Do this
by giving the event that signals when the value must be provided (initiating event) followed by the
event that signals when the event no longer needs to be provided (terminating event). If the initiation
and termination events depend on the mode, then use an event table to specify the initiation and
termination events for each mode.

ExaqpLE: con_Status is only required to be updated in mode_Operating, mode_Hazard, and
mode_Shutdown but is not updated in mode_Test or mode_BadLevDev. Provide an event table
as shown in Table 10-5.

Table 10-5. Initiation and Termination Events for con_Status

Mode Event
mode_Operating mode_Hazard ENTERED : X
mode_Shutdown
mode_Test mode_BadLevDev X ENTERED
Initiation and Termination Initiation Termination

Where the inijtiation and termination events are provided, the requirement is that the value be
periodically updated between the initiating event and the terminating event at the specified interval.
If the process continuously runs, you only provide the initiating event (e.g., system initialization).

10-8

10. Detailed Behavior Specification

10.4.5 SpECIFY TOLERANCE CONSTRAINTS

In this activity, you determine and specify the allowed deviation from the controllied variable’s ideal
value (as expressed by the value function). You perform this activity only for variables that model con-
tinuous quantities (e.g., degrees of angle) or otherwise have a notion of more andless accurate values.
Youdo not express tolerance for variables that have only one ideal value (e.g., Boolean or enumerated
types). Because the acceptable tolerance is expressed in terms of the controlled variable’s value (i.e.,
the externally visible quantity affected by the system including the output devices), you must
determine the allowed tolerance based on the originating system requirements.

You specify the tolerance by defining a function that maps the system state to the corresponding
allowed deviation from the ideal. In most cases, this function is a constant; i.e., the controlled variable
must be set with the same tolerance at all times. Where the required tolerance is a constant, it is
sufficient to specify the error bound on the controlled variable value.

ExampLE: FLMS system requirements dictate that the fuel level must be displayed within 0.5 cm
of the actual value. Thus, the controlled variable con_Level_Display has a constant tolerance
function with the value + 0.5 cm of the ideal value.

Where the required tolerance is not a constant, express the tolerance as a function of the relevant
monitored variables, terms, or modes, as necessary. If the tolerance is a direct function of the moni-
tored variables, write the expression. If the tolerance is a function only of the modes, use a selector
table. If the tolerance is a function of modes and conditions, use a condition table. Look for tolerance
to vary with the mode under the following circumstances:

* Value-Dependent Variation. The required tolerance may vary depending on changes in value of
the quantities being monitored or controlled. In particular, less tolerance may be required as
a measured quantity increases in value.

ExampLE: The displayed altitude of an aircraft is a controlled variable. The required
tolerance depends on height: the greater the altitude, the less tolerance is needed. You are
required to provide the altitude within 2 feet below 500 feet of altitude, within 10 feet from
500 to 5,000 feet of altitude, and within 50 feet above 5,000 feet of altitude.

* Degraded Modes of Operation. Systems frequently have degraded modes of operation. Less
tolerance may be required in a degraded mode than a normal operating mode. In such a case,
the required tolerance should be expressed as a function of the mode.

* Varying Load. The required tolerance may vary in proportion to the system load. This can occur
when there are fixed computing resources but a varying load at run time (e.g., where a system
must track a set of targets). In some cases, you must trade tolerance for the ability to handle
an increased load; e.g., the system tracks more targets with less tolerance. In such cases, the
tolerance should be expressed as a function of the system loading (e.g., number of targets
tracked).

10.5 REFINE MODE CLASSES

In this activity, you complete the definition of the mode classes by completing the specification of the
mode machines. To perform this activity, you need the initial mode class definitions you created in

109

10. Detailed Behavior Specification

Class Structuring, including the modes and transitions. You also need the definitions of any monitored
variables or events that the mode class depends on.

Complete the definition of a mode class by defining all of the transition events that cause mode
changes and any auxiliary terms needed in the class’s encapsulated information. Use the dependency
graph for the mode class to locate the definitions of the terms and events on which the mode machine
depends. Use the mode transition graph or mode transition table to help ensure that you have
identified all of the necessary events.

10.6 REFINE REMAINING CLASSES

In this activity, you complete the definitions of the encapsulated parts of the boundary and termclasses
except the specification of the the input and output variables and the IN and OUT relations. To per-
form this activity, you need the class specifications developed in the Class Structuring activity. In this
activity, you do the following:

¢ Provide or complete the definitions of any encapsulated terms required to support the class
interface definitions.

e Provide or complete the definitions of any encapsulated constants needed to support the class
interface definitions.

e Provide overview and explanatory material as needed.

You have completed this activity when you have defined all of the encapsulated parts of each class
specification except the input and output variables and the IN and OUT relations.

10.7 REVISIT CLASS STRUCTURING

Throughout the Detailed Behavior Specification, you revisit decisions you made in Class Structuring.
You develop the Detailed Behavior Specification working from the boundary classes that define the
controlled variables back to the classes that define the monitored variables in the controlled variable
function domain. You begin by developing the encapsulated information of a boundary class that de-
fines a controlled variable. The detailed specifications for different classes may be developed
independently.

As you develop the Detailed Behavior Specification, you may determine that you need terms,
monitored variables, or possibly modes that are not currently provided by other classes. In such cases,
youeither define the needed information in the class you are specifying or you need torevisit the Class
Structuring activity as follows:

* Where a new monitored variable or term must be provided, determine whether the definition
should be created locally or provided by another class. The variable or term should be pro-
vided by another class if its definition requires the information encapsulated by that class or
is part of the abstraction provided by that class. Create a new term class or boundary class if
necessary to address the Class Structuring criteria.

e Where a monitored variable or term must be changed, you must coordinate the change with
any other classes that use the variable or term. Use the dependency graph to determine which
class definitions may be affected.

10-10

10. Detailed Behavior Specification

¢ Where a mode definition must be added or changed, you must revisit all of the classes using the
mode class. Use the dependency graph to determine which class definitions may be affected.

As you revisit the Class Structuring activity, record any changes in classes and class dependencies in
the affected dependency graph. When you have completed this activity, you should have a set of
dependency graphs that is consistent with the information provided and used by each class.

10.8 EVALUATION CRITERIA

When the Detailed Behavior Specification is complete, the required behavior specification for every
controlled variable should be complete and consistent. The following sections discuss CoRE’s
evaluation criteria for a single controlled variable.

10.8.1 COMPLETENESS

For controlled variable functions, there is a well-defined notion of completeness. A function is
complete when every value in the domain is mapped to some value in the range. For CoRE functions,
this means that every possible value of the relevant monitored variables must be mapped to some val-
ue of the controlled variables. Thus, you assess completeness by ensuring that this property holds for
each of the functions specifying the controlled variable behavior (value function, tolerance, and
timing):

¢ Initial Value. If you supplied a value function, the value function assigns a value on entering
the initial system mode. Otherwise, an initiating event and initial value must be given.

* Mode Class. If the initial value is none, the controlled variable functions should be the same
for all system modes. If one or more modes are specified, the controlled variable functions
should be defined for all of the listed mode machines.

» Sustaining Conditions. The sustaining conditions must give a set of conditions or true.

* Value Function. The function is complete if it defines the behavior over all the possible values
of the function’s domain. If the controlled variable is a function only of the monitored vari-
ables, ensure that the function is specified for all the possible values of those variables. If it
is a function of a particular mode class, ensure that the function covers every mode of the rele-
vant mode class. Section 4.2.6 describes the inspection procedure you should follow for each
type of table (i.e., condition, event, or selector).

For an enumerated type of controlled variable, the columns should cover every possible

enumerated value or there should be a statement that the values are never used. For continu-

ous valued controlled variables, the columns should cover the range of the variable (e.g., x<0,
=0, x>0) or there should be a statement specifying which ranges are never used.

ExampLE: 'The function for the controlled variable con_Low_Alarmis defined in terms of the
mode class class_In_Operation. You verify that every mode of the mode machine appears in
some row of the event table defining the value function. You verify that every possible value
of LowAlarm appears in a column of the event table.

* Timingand Scheduling Requirements. Verify that each relevant part of the timing and scheduling
template is filled out.

10-11

10. Detailed Behavior Specification

10.8.2 CONSISTENCY

Apply the following consistency checks to the specification of REQ:

Value Function. Check that the controlled variable’s value function specifies exactly one
required behavior for each state of the system.

— Event Table. An event table describes consistent behavior if the same event does not

assign two different values to the controlled variable. You must check that the events
in a given row of the table are not the same and do not imply one another (i.c., the
events are defined so that the occurrence of one means that the other also occurs). You
must also check that events in different columns cannot occur simultaneously or, if
they can, that the specification states which column value applies.

Condition Table. A condition table is consistent if the conditions in a given row of the
table are mutually exclusive and the disjunction (i.., all conditions joined by OR oper-
ators) is true. The conditions are mutually exclusive if only one of the conditions in a
row can be true at a given time; e.g., the conditions LevelLow and NOT LevellL.ow nec-
essarily exclude one another. The conditions add up to true if one of the conditions in
the row must be true at a given time; e.g., one of the conditions LevelLow or NOT
LevelLow must be true.

Tolerance Function. Check that the function assigns a tolerance for every state for which the
value function assigns a value. You must also check that the expressions do not assign two pos-
sible accuracies to the same state (i.c., the expressions are indeed a mathematical function).
If event or condition tables are used, apply the same checks that are described for the value
function.

Timing Constraints. Check that the timing and scheduling constraints satisfy the properties
defined in Section 4.3.

10.9 EXIT CRITERIA

Detailed Behavior Specification is complete when the required behavior for every controlled variable
is completely defined.

1012

11. DEFINE HARDWARE INTERFACE

The previous activities described the required behavior of the software in terms of monitored and
controlled variables. In the Define Hardware Interface activity, you describe the resources and the
input and output variables available to the software to get the values of monitored variables and to
set the value of controlled variables, respectively.

11.1 GOALS

The goal of the Define Hardware Interface activity is to complete detailed specification of the
boundary classes by defining the input and output variables and the IN and OUT relations. The
hardware interface specification defines the resources the software may use and serves as a
demonstration that it is feasible to get the monitored values and set the controlled ones. Where the
use of particular inputs or outputs represents requirements, this should be stated explicitly and the
appropriate traceability specified. The goals of identifying the variables and relations are as follows:

¢ In defining the input variables, you explicitly identify the input resources available to the
software to determine the values of the monitored variables.

* In defining the output variables, you explicitly identify the output resources available to the
software to affect the values of the controlled variables.

The IN relation defines the relationship between the monitored variables and the input variables.
Similarly, the OUT relation defines the relationship between the output variables and the controlled
variables. In defining these relationships, you have the following goals:

¢ Thespecification of each monitored variable defines a range of values over which the software
must be able to measure the monitored quantity and a precision that expresses how accurately
the quantity must be measured. The goal of the IN relation specification is to show that the
inputs are sufficient to measure the monitored variables across the required range and to the
required precision.

» The specification of each controlled variable defines a range of values over which the software
must be able to set the controlled quantity and a precision that expresses how accurately the
quantity must be set. The goal of the OUT relation specification is to show that the outputs
are sufficient to set the controlled variables across the required range and to the required
precision.

A final goal is to specify for the subsequent designers and implementers how the hardware resources
are used to get the monitored variables or set the controlled variables. This includes the device
protocols, timing characteristics, and data conversion if necessary.

111

11. Definc Hardware Interface

11.2 ENTRANCE CRITERIA
For the Define Hardware Interface activity, you need the following products from previous activities:
* Boundary class definitions

* Input and output device interface specifications from system requirements

113 ACTIVITIES

The Define Hardware Interface activity is composed of the following subactivities:
e AssignInp . and Output Variables to Boundary Classes
¢ Define Input and Output Variables
¢ Define IN and OUT Relations

11.3.1 AsSIGN INPUT AND OUTPUT VARIABLES TO BOUNDARY CLASSES

Allocate the definitions of the input and output variables to the same class that encapsulates the
corresponding environmental variable. Examine the environmental variables that you have defined. For
each monitored variable, decide which input variables the software can use to determine the variable’s
value. For each controlled variable, decide which output variables the software can use to set its value.
Encapsulate the variable in the class that contains the definition of the environmental variable.

Because the boundary class that contains the monitored variables also encapsulates all the input variables
that can determine the values of the monitored variables, the class encapsulates the IN relation for the
input variables. Define the IN relation as part of the encapsulated information of the class. Similarly, de-
fine the OUT relation as part of the encapsulated information for the class defining the corresponding

output.

If the software uses the variable to access environmental variables defined in different classes, reassess
the decision to assign the environmental variables to different boundary classes. You may decide that the
environmental variables should be assigned to the same class.

11.3.2 DEFINE INPUT AND OvuTrUT VARIABLES

In the Define Input and Output Variables activity, you specify the detailed characteristics of the input
and output variables and describe how they are accessed by the software. Identify the input and output
variables by denoting each resource that independently changes value (Heninger 1980) by a variable.

Create the variable specification by filling out the applicable parts of the input and output variable
template as shown in Table 11-1. First, provide a unique name for each variable. Users of the require-
ments need to know with what hardware the variable is associated, how to read or write the variable,
the values that they can read or write, and the representation of the values that the variable assumes
(typically a bit pattern). Table 11-2 is a sample definition of a numeric input variable from the FLMS.
The abstract values of the input variable in_Diff_Press are integers in the range 0 to 255. An 8-bit un-
signed integer represents the values. Table 11-3is a sample definition of a nonnumeric output variable.

112

11. Define Hardware Interface

The abstract values of out_Shutdown are true and false. Zero in bit 1 of the byte represents true. One

in bit 1 represents false.

Table 11-1. Input and Qutput Variable Template

Input and Output Variable Definition
Acronym Unique identifier for the variable
Hardware The bardware unit with which the variable is
associated
Values The abstract values you can read or write:
* Numeric. Specify range and resolution of
numeric variables.
e Nonnumeric. List the abstract values of
nonnumeric variables.
Data Transfer How to read or write the variable
Data Representation How the variable assumes the abstract values are
represented

Table 11-2. Sample Definition of Input Variable Diff_Press

Acronym
Hardware
Values

Data Transfer

in_Diff_Press

Differential Pressure Unit
[0..255]

ADC(0)

Data Representation 8-bit unsigned integer

Table 11-3. Sample Definition of Output Variable Shutdown Signal

Acronym out_Shutdown
Hardware Pump Shutdown Relay
Values False (1b)

True (Ob)
Data Transfer PortC
Data Representation Bit 1 of byte

The information you need to complete the variable’s definitions should come from the input and

output interface specifications. You often will have to manipulate the information to obtain a form

suitable for completing the variable definition. If the information that you need to complete the

definition is not included in the input and output interface specifications, you may have to interview
the engineers who designed the input and output interface or experiment with the hardware.

11.3.3 DErINE IN AND OUT RELATIONS

The goal of this activity is to define the relationship between the monitored and controlled variables
and the input and output variables, respectively. As part of specifying this relationship, you establish

113

11. Define Hardware Inter{ace

that the input variables are sufficient to measure the monitored quantities and that the outputs are
sufficient to set the controlled quantities. For numeric quantities, you also define the conversion.

11.33.1 Define IN for a Monitored Variable

Define an IN relation for each monitored variable. You define the relation to show that the software
can determine the value of the monitored variable, using the available inputs, to that variable’s range
and precision requirements.

Use the monitored variable’s definition to determine the range of values and precision. Demonstrate
that the available inputs meet the monitored variable’s range requirements by giving a mapping from
the range of the monitored variable to the corresponding inputs. For discrete monitored variables
(e.g., Boolean or enumerated types), this requires showing the exact mapping between values. For
continuous quantities (e.g., degrees, feet), show the mapping over the range of values.

For continuous quantities, it is usually easier to describe the expected value, error, and delay
separately. In this case, you define its expected value as a function of the values of monitored variables.
You then give the minimum accuracy and maximum delay associated with the input device.

Figure 11-1 illustrates an example of an IN relation for the input in_Diff_Press. in_Diff_Press is used
to get the value of the monitored variable mon_Fuel_Level.

The following table describes how in_Diff Press reflects the value of mon_Fue] Level. The device
is calibrated so that it has a value in the range [1..254] when mon_Fuel_Level is between 13.0 cm
(const_ LCB) and 270 am (const UCB). A value of O for in Diff Press indicates that
mon_Fuel_Level has fallen below the lower calibration bound (const_LCB) or that the device has
failed. A value of 255 indicates that mon_Fuel Level has risen above the upper calibration bound
(const_UCB) or that the device has failed.

Determining the Value of in_Diff_Press

Variable in_Diff Press

Tolerance 0.1cm

Delay 02s _
Condition

mon_Fuel Level
< const_LCB

in_Diff_Press = 0 |in_Diff_Press in [1..254)

const_LCB < mon_Fuel_Level < const UCB | mon_Fuel_Level >

The table describeshowin_Diff_Press reflects the value of mon_Fuel_Level_Unknown. When
in_Diff_Press has a value of either 0 or 255, we assume that in_Diff_Press has failed and that
the FLMS is unable to determine the value of mon_Fuel_Level.

The following expression describes how the value of mon_Fuel_Level can be calculated from
the value of in_Diff_Press:

in_Diff Press-1

mon_Fuel Level = 753

X (const_UCB - const_LCB) + const_LCB + 0.28 cm’

Figure 11-1. IN Relation for in_Diff Press

114

11. Define Hardware Interface

After you have defined the mapping from the range of the monitored variable to the inputs, you can
define the conversion. The expression following the table defines the conversion from the values of
in_Diff_Press to the values of mon_Fuel_Level. The specification of in_Diff_Press is completed by
specifying the delay associated with getting the inputs and the accuracy relative to the monitored
quantity. The specification for in_Diff_Press is given in Figure 11-2.

The input variable in_Diff_Press has a precision of

const UCB — const LCB _ 27,0 ~ 13.0 _
3 =404 0.0551cm

which is sufficient to represent mon_Fuel_Level to the required 0.5 cm. The maximum error
introduced by the delay of 02 s is

02 s X const_Max_Fuel_Rate = 0.2s X 0.375cm/s = 0.075cm

The maximum error introduced by the device error and delay of in_Diff_Press is the sum of
the two, 0.175 cm, which satisfies the needs of the FLMS to determine the value of
mon_Fuel_Level to 0.5 cm.

Figure 11-2. Accuracy Specification for in_Diff_Press

11.3.3.2 Define OUT for a Controlled Variable

Define an OUT relation for each controlled variable. You define OUT to show that the software can
set the values of the controllc variable, using the available outputs, to that variable’s range and
precision requirements.

Use the controlled variable’s definition to determine the range of values and precision. Demonstrate
that the available outputs meet the controlled variable’s value requirements by giving a mapping from
theset of possible outputs to the set of possible controlled variable values. For discrete controlled vari-
ables (e.g., Boolean or enumerated types), this requires showing the exact mapping between values.
For continuous quantities (e.g., angle of a flap, degrees of rotation of a dial), show the mapping over
the range of values.

For continuous quantities, it is usually easier to describe the expected value, error, and delay
separately. In this case, you define its expected value of the controlled variable as a function of the
output values. You then give the minimum accuracy and maximum delay associated with the output
devices.

Any of the CoRE notations can be used to define the OUT relation. If the controlled variable is a
continuous function of the output variables, use standard mathematical notation. If the controlled
variable depends on conditions or modes, use the condition or event tables described in Section 4.1.6.

Table 11-4 illustrates the use of a condition table to specify the mapping from the output variable
out_Shutdown to the values of the Boolean controlled variable Shutdown_Relay. Because the values
are discrete, the table gives the mapping for each value; this shows that the available output values
cover the range of the controlled variable. The table gives the expected value of the controlled variable
con_Shutdown_Relay as a function of the output variable out_Shutdown. The first column of the
table indicates that if the output variable out_Shutdown = true, then con_Shutdown_Relay = open.

115

11. Define Hardware Interface

The second column of the table specifies that if out_Shutdown = faise, then con_Shutdown_Relay
is set to closed.

Table 11-4. Sample OUT Relation for Coatrolled Variable con_Shutdown_Relay

out_Shutdown = true out_Shutdown = false
con_Shutdown_Relay = open ’

After you have specified the expected value of the controlled variable as a function of the output
variables, define the error and delay introduced by the output devices. Discrete values have no
associated error. For continuous values, these are typically constants. Table 11-5 indicates that if the
software sets the value of the output variable out_Shutdown to true, for example, then the controlled
variable con_Shutdown_Relay must assume the value open within 10 milliseconds. Because
Shutdown_Relay is an enumerated variable, there is no tolerance associated with it (indicated by NA
in the table).

Table 11-5. Sample Tolerance and Delay for Controlled Variable con_Shutdown_Relay

Error NA
Delay 10ms

For continuous values, you should also specify the conversion from the output to the values of the
controlled variable.

Each controlled variable’s REQ relation defines an associated tolerance in value and time. You must
show that the outputs can be set with sufficient accuracy to satisfy the tolerance in value. You must
show that the maximum delay in setting the values is less than the delay allowed by the REQ relation.

11.4 EVALUATION CRITERIA

This section describes how to evaluate the consistency and completeness of the hardware interface
that you have defined. You should be able to answer “yes” to each of the questions listed below:

¢ For each of the input and output variables that you have identified:

— Is the variable template filled in?
* For each of the input variables that you have defined:

— Is there at least one IN relation?

~ Atre all of the monitored variables in the domain of IN defined in the class?
» For each of the controlled variables that you have defined:

— Isthere at least one OUT relation?

— Are all of the output variables in the domain of OUT encapsulated by the boundary
class?

11-6

11. Define Hardware Intesface

* Can each output variable be used to set the value of at least one controlled variable?

» Can the value of each monitored variable be determined from the IN relation?

11.5 EXIT CRITERIA

Define Hardware Interface is complete when you can answer “yes” to all of the questions listed in
Section 11.4.

11-7

11. Define Hardware Interface

118

12. ANALYZING A CoRE SPECIFICATION

CoRE’s models, the use of mathematics, and the use of formats for capturing requirements all support
analysis of a CoRE specification for completeness and consistency. Detailed procedures for analyzing
the products of individual activities have been provided in the detailed process sections (Sections 8
through 11). This section summarizes the analysis process and its goals.

This section describes a series of steps for analyzing completeness and consistency of a CORE
specification. Wherever there are guidelines not supported by strict rules, you are given heuristics.

12.1 MONITORED AND CONTROLLED VARIABLES

All monitored and controlled variables that are measured or affected by the system have been defined

in a boundary class.

Completeness

Consistency

There is a definition for each monitored or controlled variable in the
specification. Each variable is defined in a boundary class.

All the relevant attributes for all monitored and controlled variables
have been specified.

There is only one definition for each monitored or controlled variable
in the specification.

The attributes of each variable (i.e., type, range, and precision) are
consistent with any NAT constraints for the variable.

The context diagram shows one incoming arrow from an entity to the
software for each monitored variable and one outgoing arrow from the
software to an entity for each controlled variable.

The dependency graph shows one incoming arrow for each monitored
variable terminating at the boundary class that defines the variable
and one outgoing arrow for each monitored variable originating at the
boundary class that defines the variable.

12.2 CONTROLLED VARIABLE FUNCTIONS

The REQ relation has been fully and consistently defined for every controlled variable.

Completeness

There is a REQ relation defined for each controlled variable in the
boundary class that defines the controlled variable. All parts of the
relation are defined, in particular:

12-1

12. Analyzing a CoRE Specification

Consistency

— There is a value function defined.

— Where applicable, there is an accuracy tolerance function
defined. '

~ There is a timing tolerance function.

The definition of each function is mathematically complete according
to the detailed process.

The function is defined for every mode of the applicable mode
machine. It depends on every state permitted by the NAT relation.

The parts of the REQ relation definition are mutually consistent, and
the relation is consistent with the controlled variable definition (i.c.,
with the type, range, and precision of the variable).

The value function maps each value of the monitored variables in its
domain to, at most, one value in the range.

Every mode used is defined by exactly one mode machine.

Every term used is defined in the encapsulating class or on the
interface of some other class.

There is an arrow in the dependency graph for each term defined by
one class and used by another class. The arrow originates from the
defining class and terminates at the using class.

12.3 TERMS AND MODES

Every term is fully defined and properly used. Every mode class is completely defined.

Completeness

Consistency

Every term has a definition.

Every mode is defined by exactly one mode machine. The definition
of each mode machine is complete as specified in the detailed process
for evaluating mode machines.

Any term defined in one class and used in another is provided on the
interface section of the defining class.

Any term defined in the encapsulated part of a class is not used outside
the class.

Every term is defined exclusively as an expression on monitored
variables, constants, and other terms.

The dependency graph shows an arrow for every term or mode class
used by the defining class but defined by another class. The arrow
originates in the defining class and terminates in the using class.

12-2

12. Analyzing a CoRE Specificatioa

The definition of every mode machine satisfies the criteria for
consistency in the detailed process for evaluating mode classes.

12.4 IN AND OUT RELATIONS

There is an IN relation defined for every monitored variable and an OUT relation defined for every
controlled variable. The IN, OUT, and the input and output variable specifications are complete and

internally consistent.

Completeness

Consistency

12.5 GLOBAL CHECKS

There is at least one IN relation defined for each input variable in the
specification. The definition of each IN relation is complete and
internally consistent.

There is at least one OUT relation defined for each output variable in
the specification. The definition of each OUT relation is complete and
internally consistent.

There is a definition for each input or output variable in the
specification. The variable specification is complete according to the
detailed process description (i.c., all applicable parts of the template
are filled in).

Thereisatleast one IN relation for each input variable and at least one
OUT relation for each output variable.

Each IN and OUT relation is complete and consistent according to the
detailed process description.

The IN relation and input variable are defined in the class that defines
the corresponding monitored variable.

Make additional checks for consistency or completeness between CoRE relations.

Completeness

Consistency

Check that every monitored variable and every term is used in at least
one REQ relation.

For a given controlled variable, the delays allowed by the IN and OUT
relations must be consistent with the timing tolerance for the REQ
relation; i.e., the maximum delay required to read the inputs plus the
maximum delay required to set the outputs must be less than the
maximum delay allowed by the controlled variable tolerance.

12-3

12. Analyzing a CoRE Specification

This page intentionally left blank.

124

APPENDIX A. SOFTWARE REQUIREMENTS FOR
THE FUEL LEVEL MONITORING SYSTEM

A.1 INTRODUCTION

The design of the FLMS comprises automatic or manual control mechanisms (engine and fuel-level
controls) and safety monitoring devices. The safety monitoring devices include fuel gauges and gauge
cocks that convey the fuel level in the tank, fusible plugs or fuse alarms that alert the operator when
the fuel level is too low, and fuel flow rate gauges or other gauges showing the engine operating
condition. The FLMS is intended to replace or complement the above-mentioned devices. It monitors
and displays the fuel level in the tank and provides visible and audible alarms for high and low fuel
levels. With the currently selected hardware configuration, fuel level is displayed in a window on a
CRT display, two “annunication” windows on the CRT provide visible indication of exceeded fuel-lev-
el limits, and the computer’s speaker provides an audible alarm.

A.2 REQUIREMENTS FOR THE FUEL LEVEL MONITORING SYSTEM
(1) The FLMS shall monitor the fuel level in the tank.

(2) When the level in the tank exceeds the upper or lower limits, an alarm is triggered. (3) If the fuel
level is out of limits for more than the shutdown lock time, the pump shall be shut down. (4) It shall
be possible to restart the system when the fuel levels are again within limits.

(5) If the system is unable to determine the fuel level of the tank, the system shall notify the operator
of the condition and shut down the pump.

(6) A capability to conduct system self-testing shall be provided. (7) System self-test shall be possible
at any time. (8) On initiation of a self- test, the system shall shut down the pumps. (9) A self-test shall
not keep the system offline for longer than 15 seconds. (10) At the conclusion of a self-test, it shall be
necessary to restart the system.

(11) The operator shall be provided with reset and test switches. (12) The system shall display fuel
level and status alarms to the operator. (13) Indications of low or high fuel levels (hazardous
conditions) or unknown fuel levels shall be presented to the operator. (14) Whenever there is a
hazardous condition or an unknown, the system shall provide audible and visual alarms.

Al

Appendix A. Software Requirements for the Fuel Level Monitoring System

This page intentionally left blank.

APPENDIX B. CoRE SPECIFICATION OF THE
SOFTWARE REQUIREMENTS FOR THE FUEL
LEVEL MONITORING SYSTEM

B-1

Appendix B. CoRE Specification of the Software Requiressonts for the Fuel Leve! Monitoriag Sysiem

This page intentionally left blank.

B-2

Appendix B. CoRE Specification of the Software Requiremeats for the Fuel Level Moaitoring System

APPENDIX B CONTENTS

B.1 System ConteXxtoiuiiiitiieeiiiitiiieiiniiiiieiierenioneieneinanns B-5
B.2 Fuel Level Monitoring System Dependency Graphcocue.. B-6
B.3 mode _class In_Operationcoceiuiiniuiiineiieenanenniosinacaneens B-7
B.3.1 Class Interface veeteeesansosassesanconsnesnsannns B-7
B.3.2 Encapsulated Informationcoiiiiiiiiiiiiiiiiiiiiiiiiiiiieee B-7
B.3.3 Traceability S B-8
B4 class_ Fuel Tankccoiuiiiiniiiiiuiiiiiiiiiiiiiieiieninenianenes B-9
B4l ClassInterfaceccoviiiiiiiiiiereiiiininiiiieeninnnionnnnenes B-9
B.4.1.1 NATRelationcovvvuuinennennnneen. et B-10

B.4.2 Encapsulated Informationcoovviiiiiiiiiiiiiiiiiiiiiiiien, B-10
B.4.2.1 InputVariablescoiiiiiiiiiiii e B-10
B4.22 INRelationcvvvvmuiunnennnnnns e eeeiereetieieraaeas B-11

B4.3 Traceabilityoooiniiiiiiiiiiiiii i i e B-12
T b T o141 o B-13
B.S.1 ClassInterfaceoeiiuiiniiiiniinneninaeennennennenenss seeeens B-13
B.5.2 Encapsulated Information..........c..coiiiiiiiiiiiiiiiiiiiiiiiinn., B-13
B.5.2.1 REQRelation R R LETEPPRPRPPY B-13
B.5.2.2 Output Variableso.ovuiiiiiiiiiiiiiiiiniiiiiiiiiiieiean B-14

B.S5.23 OUTReIation ...oviveiiriieiiiiietineeieniecesseennecnnnonns B-14

B.5.3 Traceabilityoovvevniiniiiiiiiiiiiiiii ittt i e B-14
Bb class TIME ...covvviiiiitiiiiiieirnneaieseioceosorossssssnnnssssssasons B-15
B6.d ClassInterfaceo.oiuviniiiiiiieiiiiiiniiiiiieineaieaieeneees B-15
B.6.2 Encapsulated Information.............cooiiiiiiiiiiiiiiiiiiiii ., B-15
B.6.21 Input Variablesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiia B-15
B6.22 INRelationccvoviiiiiiniiniiinriiiiiiieenniaaieennnns B-15

B-3

Appeadix B. CoRE Specification of the Software Roquiremeats for the Fucl Level Mouitoring Sysiem

B.6.3 Traceabilityooovuviniiiniiiiiiiiiiiii ittt B-15
B.7 Class_OPeratorcvvvtenerrnaeeenoneaeaterorenessasseasasscnsssasonens B-16
B7.1 ClassInterfacec.oouiuiiiiiiiiiiiiiiiiiiiiiiinnsienecianecinns B-16
B.7.2 Encapsulated Informationcooiiiiiiiiiiiiiiiiiiiiiinenans B-16
B.7.3 Traceabilityooovviniinriiniiiiiiiiiiiiiiiiiiiii it B-16
B8 dass_Opcrator_Commuﬂmﬁon PO - 5 &
B.8.1 ClassInterfaceccoiuiviiiiiriiiiieieiieineeieriiennecnacnns B-17
B.8.2 Encapsulated Informationccoiiiiiiiiiiinieinireiiinnns B-17
B.82.1 REQRelationoooiiiiiiiiiiiiii B-18
B.8.2.2 Output Variablesccoiiiieiieiiirieieiieiiieieninnnneens B-21
B.823 OUTRelationooiuitiiiiiiiiieiiiirertnieinnecerannnnenss B-21
B.8.3 Traceabilityovvuiiuniieiiiierieinrerinenereerssononsasesoneens B-22
B9 class SWItChuviinitiiiieiniiiiiiiiiiiiiitiitiiitieiriiiiiriraeiaees B-23
B.9.1 ClassINterfacecvutiiiiniiieiiiiniieeieennrecsnnscenecnnnees B-23
B.9.2 Encapsulated Information................. B-23
B.9.2.1 Input Variablesccouiiiiiiiiiiiiiiiiiiiiiiiii i B-23
B9.22 IN Relationoceviiinniiiiiiiiiiiiiiiiiiiiiiineieneeeannans B-24
B.9.3 Traceabilitycccvoiteiiiiiinniiiiieereeiencessecssennssscnananss B-24
B.10 Safety REQUITEMENLS ..o vvneternreineennusrsosesennssccesseansssancons B-24
B.11 Security Requirementscciiiiieiieiieieneianecencnserancanenns B-25
B.12 Other REQUITEMENtSvvnniinintiiieneiietaneceseosesesesincaseons B-25
APPENDIXBINDEX ...o0tittitiiteneiniieieserseseceenssnssrciceacsennrsens B-26
APPENDIX B FIGURES
Figure B-1. Fuel Level Monitoring System: Context Diagramcovvienne. B-5
Figure B-2. Fuel Level Monitoring System DependencyGraphcovivnvinn.... B-6

Figure B-3. Fuel Level Monitoring System Pump and Tank Configuration (Front View) .. B-9

B4

Appendix B. CoRE Specification of the Software Requiremeats for the Fuel Level Monitoring Sysiem

B.1 SYSTEM CONTEXT

Figure B-1 illustrates the context of the FLMS. The bubble represents the FLMS system. Inputs to
the FLMS are the monitored variables. Outputs are the controlled variables.

Shipboard Fuel
System

Time con_Shutdown

con_Audible_
Al

Figure B-1. Fuel Level Monitoring System: Context Diagram

Display

con_High
Alarm

B-5

Appendix B. CoRE Specification of the Software Requiremeats for the Fuel Level Moaitoriag Sysiom

B.2 FUEL LEVEL MONITORING SYSTEM DEPENDENCY GRAPH

Figure B-2 illustrates the dependency graph of this specification. It is the detailed view of the FLMS
bubble in Figure B-1. Arcs entering the diagram from outside represent monitored variables, and arcs
leaving the diagram represent controlled variables. There is an internal arc where a class uses
requirements information defined by the interface of another class.

con_Shutdown_Relay

mon_Fuel_Level

Figure B-2. Fuel Level Monitoring System Dependency Graph

B-6

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoring System

B3 MODE_CLASS_IN_OPERATION

mode_class_In_Operation defines the FLMS modes. It encapsulates the rules for determining the
current mode and the events that trigger transitions among the modes.

B.3.1 CLASS INTERFACE

Modes Other Classes Are Allowed to Use

Mode
mode_Operating
mode_Hazard
mode_Shutdown
mode_Test
mode_BadLevDev

Constants, Events, and Terms Other Classes Are Allowed to Use

Name
term_Test_Time

B.3.2 ENCAPSULATED INFORMATION

Constant, Event, and Term Glossary
Name Type Values Definition
const_Shutdown_Lock_Time TIME 20s
const_Max_Test_Time TIME 140s

term_Test_Time TIME DURATION(INMODE(mode_Test))

Appoadix B. CoRE Specification of the Software Requireaseats for the Fuel Lovel Monitoriag System -

Mode Transitions: mode_class_In_Operation

Hazard))
Test))

| >= const_Shutdown_Lock_Time
_Range

'mode

| DURATION(INMODE(

mode
| >= const_Max_Test_Time
1event_8elﬂest

ys
| DURATION(INMODE(

_Range

Fuel Level! Unknown

term_Inside H:
t_Reset
| term_Fuel_Level
| = withinki

Current Mode
mode_Operating
@T mode_Test
@T |mode_BadLevDev
mode_Hazard @T f mode_Operating
@T mode_Shutdown
@T mode_Test
@T |mode_BadLevDev
mode_Shutdown t QT mode_Operating
@T mode_Test
@T |mode BadLevDev
mode_Test 1@ [| |mode_Shutdown

mode_BadLevDev

"’ e e ——— ﬁ

B.3.3 TRACEABILITY

The following capabilities from Softv~ ~ Requirements for the FLMS (see Appendix A) are fully or
partially satisfied by this class:

(3) If the fuel level is out of limits for more than the shutdown lock time, the pump shall be shut
down.

(9) Aself-test shall not keep the system offline for longer than 15 seconds.

(10) At the conclusion of a self-test, it shall be necessary to restart the system.

B-8

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoring System

B.4 CLASS_FUEL_TANK

class_Fuel_Tank provides the information needed to determine the current fuel level; whether the fuel
level is above, below, or within safe limits; and whether the fuel level is within the hysteresis bounds.
It encapsulates the constants and rules for determining whether the fuel level is within safe or hysteresis
limits. It also encapsulates how the software can determine the values of mon_Fuel_Level and
mon_Fuel_Level_Unknown.

B.4.1 CLASS INTERFACE

Environmental Variable Glossary
Name Type Values Physical Interpretation
mon_Fuel_Level LENGTH 0.0..30.0 Level of fuel in the tank, in centimeters (cm),

along the vertical axis on the left side of the tank,
5 cm from the front edge. The level is measured
with respect to the scale (see Figure B-3).

mon_Fuel Level Unknown BOOLEAN false The system is able to obtain the information
required to determine the value of fuel level to

the required accuracy.
true The system is unable to obtain the information
required to determine the value of fuel level to
the required accuracy.
=F
\\ Fuel
N\ Pump
w
A)
30dcm 00

Fuel flow
to engine

Source: Adapted from Van Shouwen (1990)

Figure B-3. Fuel Level Monitoring System Pump and Tank Configuration (Front View)

B-9

Appendix B. CoRE Specification of the Software Requirements for the Fucl Lovel Moaitariag System

Constants, Events, and Terms Other Classes Are Allowed to Use

Name
term_Fuel_Level Range
term_Inside_Hys Range

B4.1.1 NAT Relation

o = o

~0.4 cm < mon_Fuel_Level < 30.0cm

B.4.2 ENCAPSULATED INFORMATION

Constant, Event, and Term Glossary

Name Type Value Definition
const_High Fuel Limit LENGTH 26.0cm

const_Hysteresis LENGTH 0.5 cm

const_LCB LENGTH - 130em
const_Low_Fuel Limit LENGTH 14.0 cm

const_Max Level Rate LENGTH/TIME 0.375 cmfs

const UCB LENGTH 270cm

term_Fuel_Level Range ENUMERATED levellow mon_Fuel Level < const_Low_Fuel_Limit
withinlimits const_Low_Fuel Limit < mon_Fuel Level
< const_High Fuel Limit
levelhigh mon_Fuel Level > const_High_Fuel Limit
term_Inside_Hys Range BOOLEAN true (const_Low_Fuel Limit +
: const_Hysteresis) < mon_Fuel Level <
(const_High Fuel_Limit —

const_Hysteresis)

false (const_Low_Fuel_Limit +
const_Hysteresis) > mon_Fuel Level OR

mon_Fuel Level >

(const_High Fuel_Limit —

const_Hysteresis)

B.4.2.1 Input Variables

Differential Pressure Unit
Acronym in_Diff_Press
Hardware Differential Pressure Unit
Values [0..255]
Data Transfer ADC(0)
Data Representation 8-bit unsigned integer

B-10

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoring Sysiem

B.4.2.2 IN Relation

in_Diff_Press reflects the value of mon_Fuel_Level. The device is calibrated so that it has a value in
the range [1..254] when mon_Fuel_Level is between 13.0 cm (const_LCB) and 27.0 cm (const_UCB).
Avalue of O for in_Diff_Press indicates that mon_Fuel_Level has fallen below the lower calibration
bound (const_LCB) or that the device has failed. A value of 255 indicates that mon_Fuel_Level has
risen above the upper calibration bound (const_UCB) or that the device has failed. When we cannot
distinguish failure of in_Diff_Press from mon_Fuel_Level going outside of the calibration bounds, we
assume that the device has failed.

Determining the Value of in_Diff_Press

Variable in_DiffPress
Error 01lcm
Delay 02s
Condition
mon_Fuel Level < const_LCB << mon_Fuel_Level < const UCB |mon_Fuel_Level >

const_LCB
in_Diff_Press = 0

const_UCB

in_Diff_Press reflects the value of mon_Fuel_Level_Unknown. When in_Diff_Press has a value of
either 0 or 255, we assume that in_Diff_Press has failed and that the FLMS is unable to determine
the value of mon_Fuel_Level.

Determining the Value of in_Diff_Press

— . —
in_Diff_Pressin [1 .. 254] in_Diff Press = 255

Variable in_Diff_Press
Error N/A
Delay 02s
Condition
mon_Fuel_Level_Unknown NOT mon_Fuel_Level_Unknown
in_Diff_Press = 0 OR in_Diff_Press = 255 in_Diff_Pressin [1 ..254]

The following expression describes how the value of mon_Fuel_Level canbe calculated from the value
of in_Diff Press:

in_Diff Press—1

mon_Fuel Level = 253

X (const_UCB - const_LCB) -~ const LCB % 0.28 cm

The input variable in_Diff_Press has a precision of

const UCB-const LCB _ 27.0-13.0

254 =""2%4 = 0.0551 cm

which is sufficient to represent mon_Fuel Level to the required 0.5 cm. The maximum error
introduced by the delay of 0.2 s is

B-11

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoriag System

0.2 s x const_Max_Fuel_Rate = 0.2 s x 0.375 cm/s = 0.075 cm

The maximum error introduced by the device error and delay of in_Diff_Press is the sum of the two,
0.175 cm, which satisfies the needs of the FLMS to determine the value of mon_Fuel_Level to 0.5 cm.

B.4.3 TRACEABILITY

The following capability from Software Requirements for the FLMS (see Appendix A) is fully or
partially satisfied by this class:

(1) The FLMS shall monitor the fuel level in the tank.

B-12

Appendix B. CoRE Specification of the Sofiware Requirements for the Fucl Level Monitoring System

B.5 CLASS_PUMP

class_Pump encapsulates the rules that determine the required behavior of the pump and the
mechanisms available to the software to support the required behavior.

B.5.1 CLaAsS INTERFACE

None.

B.5.2 ENCAPSULATED INFORMATION

Name
con_Shutdown_Relay

B.5.2.1 REQ Relation

Environmental Variable Glossary

Type Values Physical Interpretation
ENUMERATED cosed The fuel pump shutdown relay is closed, and the

fuel pump is enabled.

open The fuel pump shutdown relay is open, and the fuel
pump is disabled.

The FLMS disables the pump under unsafe unconditions and tests the mechanism for disabling the

pump.
Behavior of con_Shutdown_Relay

Variable con_Shutdown_Relay
Initial Value See value function
Mode Class mode_class_In_Operation
Sustaining Condition true
Mode Events
mode_Operating X ENTERED
mode_Hazard X X
mode_Shutdown ENTERED X
mode_BadLevDev
mode_Test
con_Shutdown_Relay open ‘ closed
Tolerance N/A
Initiation Delay O ms
Completion Deadline 50 ms

B-13

Appeadix B. CoRE Specification of the Software Requirescats for the Fuel Level Monitoring Sysiem

B.S5.2.2 Output Variables

Shutdown Signal
Acronym out_Shutdown
Hardware Pump Shutdown Relay
Values false (1b)
true (Ob)
Data Transfer PortC
Data Representation Bit 1 of byte

B.S23 OUT Relation

Setting the Value of con_Shutdown_Relay

Variable con_Shutdown_Relay
Error NA
Delay 10 ms
Condition
out_Shutdown = true out_Shutdown = false
con_Shutdown_Relay = open con_Shutdown_Relay = closed

B.5.3 TRACEABILITY

The following capabilities from Software Requirements for the FLMS (see Appendix A) are fully or
partially satisfied by this class:

&)

4
)

(©)
(7)
@®)

If the fuel level is out of limits for more than the shutdown lock time, the pump shall be shut
down.

It shall be possible to restart the system when the fuel levels are again within limits.

1

If the system is unable to determine the fuel level of the tank, the system shall notify the
operator of the condition and shut down the pump.

A capability to conduct system self-testing shall be provided. |
System self-test shall be possible at any time. |

On initiation of a self-test, the system shall shut down the pumps.

B-14

Appendix B. CoRE Specification of the Software Requirements for the Fuel Leve! Moniloring Systiem

B.6 CLASS_TIME

class_Time encapsulates the mechanisms available to the software to determine the values of the mon-
itored variables associated with the passage of time.

B.6.1 CLASS INTERFACE

Environmental Variable Glossary
Name Type Values Physical Interpretation
mon_Time TIME 0..31536 X 10° Time, in milliseconds (ms), since system
initialization

B.6.2 ENCAPSULATED INFORMATION

B.62.1 Input Variables

System Timer
Acronym in_ClkPulse
Hardware System timer
Values None
Data Transfer Interrupt (1Ch)
Data Representation None

B.6.2.2 IN Relation
Determining the Value of in_Clk_Pulse

Variable in_Clk_Pulse
Error N/A
Delay 1ms
Events
@T(mon_Time mod 55 = 0) @F(mon_Time mod 55 = 0)
in_Clk_Pulse defined in_Clk_Pulse undefined

B.6.3 TRACEABILITY

The following capabilities from Software Requirements for the FLMS (see Appendix A) are fully or
partially satisfied by this class:

(3) Ifthe fuel level is out of limits for more than the shutdown lock time, the pump shall be shut
down. '

(9) Aself-test shall not keep the system off line for longer than 15 seconds.

B-15

Appeadix B. CoRE Specification of the Soltware Requirements for the Fusl Love! Monitoring Systom

B.7 CLASS_OPERATOR

class_Operator encapsulates how the FLMS is required to interact with the operator and the
mechanisms available to the software to support the required interactions.

B.7.1 CLASS INTERFACE
Constants, Events, and Terms Other Classes Are Allowed to Use

Name
event_Selftest
event_Reset

B.7.2 ENCAPSULATED INFORMATION

term_Test Time 7/'\ con_Audible_Alarm
mode _class In Operation - >
term_Fuel Level Range [class_Operator_ con_High Alarm

Communication | °08.Low_Alam
mon_Fuel_Level con Level Display—

mon_Time '_/

mon_Selftest_Switch event_Selﬁat=

mon Reset Switch class_&vitch) event_Reset

Dependency Graph for Operator Interface
B.7.3 TRACEABILITY

See encapsulated classes.

B-16

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoring Sysiem

B.8 CLASS_OPERATOR_COMMUNICATION

class_Operator_Communication encapsulates the rules that determine how the FLMS communicates
to the operator and the mechanisms available to the software to support this communication.

B.8.1 CLASS INTERFACE

None.

B.8.2 ENCAPSULATED INFORMATION

Name
con_High Alarm

con_Level_Display

con_Low_Alarm

con_Audible_Alarm

Environmental Variable Glossary
Type Values Physical Interpretation
ENUMERATED on The alarm labeled “FUEL LEVEL HIGH”
is visible to the operator.
off The alarm labeled “FUEL LEVEL HIGH”
is not visible to the operator.
REAL 0.0..99.9 The value conveyed by the display labeled

ENUMERATED on

off

ENUMERATED sound
silent

“FUEL LEVEL.”

The alarm labeled “FUEL LEVEL LOW”
is visible to the operator.

The alarm labeled “FUEL LEVEL LOW”
is not visible to the operator.

The audible alarm is sounding.
The audible alarm is silent.

Constant, Event, and Term Glossary

Name Type
const_High_Alarm_Col INTEGER
const_High_Alarm_Row INTEGER
const_Level_Display Row INTEGER
const_Low_Alarm_Col INTEGER
const_ Low_Alarm_Row INTEGER
const_MaxCol INTEGER
const_MaxRow INTEGER
const_MinCol INTEGER
const_MinRow INTEGER
term_Digit(x, k) CHARACTER
term_Flash_On BOOLEAN

Values

9
17
6
29
17
39
24
0
0

true
false

Definition

10%

x mod 10x# if—l%‘ =0
spacc if-]-f)—k' = 0

mon_Time mod 1000 < 500
mon_Time mod 1000 = 500

B-17

Appeadix B. CoRE Specification of the Software Requireaseats for the Fuel Level Moaitoring System

Name Type Values Definition
term_Level_Display_Digit(i) INTEGER 20 ifi=0

18 ifi=1

17 ifi=2

16 ifi=3
event_SetDigit(x, i) EVENT @T(out_Character = term_Digit(x,

i)) WHEN out_Cursor_Row =
nst_Level Display Row AND

out__Cutsor_._Qol- = term_Level

_Display_Digit(i)

B.8.2.1 REQ Relation

The FLMS informs the operator when mon_Fuel_Level is too high, informs the operator when the
FLLMS is unable to determine whether mon_Fuel _Level is too high, and tests the mechanism for
informing the operator.

Behavior of con_High_Alarm

Controlled Variable Name con_High Alarm

Initial Value (con_High_Alarm = on), system init

Mode Class mode_class_In_Operation

Sustaining Conditions true

Mode Events

mode_Operating |X ENTERED

mode_Hazard ENTERED WHEN term_Fuel_Level Range |@F(term_Fuel Level Range =
= levelhigh OR @T(term_Fuel _Level Range |levelhigh)
= levelhigh)

mode_Shutdown |X ' X

mode_Test ENTERED @T(term_Test_Time > 2)

mode_BadLevDev |@T(term_Flash_On) @F(term_Flash_On)

ﬁ

con_High_Alarm on off

Tolerance N/A

Initiation Delay Oms

Completion Deadline 100 ms

B-18

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoriag System

The FLMS informs the operator of the value of mon_Fuel Level and tests the mechanism for
informing the operator.

Behavior of con_Level_Display

Controlled Variable Name con_Level_Display
Initial Value See value function
Mode Class mode_class_In_Operation
Sustaining Conditions true
Mode Event
mode_Operating | ENTERED OR X X X

mode_Hazard @T1('
mode_Shutdown |mon_Fuel_Level -

con_Level_Display|
=>05cm
mode_Test X ENTERED OR @T(term_Test_Time > X
@T(4)
term_Test_Time >
14)
mode_BadLevDev X X X ENTERED

con_Level Display

mon_Fuel_Level 0.0 L(term_Test_Time — 4)]

x11.1
Tolerance 0S5 cm
Initiation Delay Oms
Completion Deadline 500 ms

The FLMS informs the operator when mon_Fuel_Level is too low, informs the operator when the
FLMS is unable to determine whether mon_Fuel_Level is too low, and tests the mechanism for in-
forming the operator.

Behavior of con_Low_Alarm

Controlled Vuriable Name con_Low_Alarm

Initial Value (con_Low_Alarm = on), System init
Mode Class mode_class_In_Operation
Sustaining Condition True

B-19

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Mositoring System

Mode Events
mode_Operating X ENTERED
mode_Hazard ENTERED WHEN term_Fuel_Level_Range [@F(term_Fuel_Level Range =
= levellow OR @T(term_Fuel_Level Range |levellow)
= levellow)
mode_Shutdown X X
mode_Test @T(term_Test_Time => 2) @T(term_Test_Time > 4)

@T(term_Flash_On)

@F(term_Flash_On)

Tolerance
Initiation Delay
Completion Deadline

N/A
Oms
100 ms

The FLMS attracts the operators attention when mon_Fuel_Level has an unsafe value and when it
is unable to determine the value of mon_Fuel_Level, and it tests the mechanism for attracting the

operator’s attention.

Behavior of con_Audible_Alarm

Controlled Variable Name con_Aundible_Alarm

Initial Value (con_Audible_Alarm = silent), System initialization

Mode Class mode_class_In_Operation

Sustaining Condition True

Mode Events

mode_Operating X ENTERED

mode_Hazard ENTERED OR @T(term_Fuel_Level Range =
@F(term_Fuel_Level_Range = withinlimits) | withinlimits)

mode_Shutdown X X

mode_Test @T(term_Test_Time = 0) @T(term_Test_Time > 4)

mode_BadLevDev ENTERED X

con_Andible_Alarm |sound silent

Tolerance N/A

Initiation Delay Oms

Completion Deadline 100 ms

B-20

Appendix B. CoRE Specification of the Software Requiremesis for the Fucl Level Monitoring System

B.8.2.2 Output Variables

Data Transfer

Data Representation

Acronym

Values

Data Transfer
Data Representation

B.8.2.3 OUT Relation

Cursor Position

out_Cursor_Row
out_Cursor_Col

Console

const_Min_Row < out_Cursor_Row < const_Max_Row

const_Min_Col < out_Cursor_Col =< const Max Col

Softint (10h), function 02h

out_Cursor_Row 8088 register DH
out_Cursor_Col 8088 register DL

8-bit unsigned integer
Screen

out_Character
Console
space 32

period 46

block 219

Softint (10h), function OEh, 8088 register AL

8-bit unsigned integer

Setting the Value of con_High_Alarm

Events

@T(out_Character = space)
WHEN out_Cursor_Row =
const_High Alarm_Row AND
out_Cursor_Col =
const_High _Alarm_Col

@T(out_Character = block)
WHEN out_Cursor_Row =
const_High_Alarm_Row AND
out_Cursor_Col =
const_High_Alarm_Col

@T/(out_Character 7 block
AND out_Character 7 space)
WHEN out_Cursor_Row =
const_High_Alarm_Row AND
out_Cursor_Col =
const_High Alarm_Col

B-21

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoriag System

Setting the Value of con_Low_Alarm

Events

@T(out_Character = space)
WHEN out_Cursor_Row =
const_Low_Alarm_Row AND
out_Cursor_Col =
const_Low_Alarm_Col

@T(out_Character = block)
WHEN out_Cursor_Row =
const_Low_Alarm_Row AND
out_Cursor_Col =
const_Low_Alarm_Col

@T(out_Character 7 block
AND out_Character 7 space)
WHEN out_Cursor_Row =
const_Low_Alarm_Row AND
out_Cursor_Col =

const_Low_Alarm_Col
b —
LowAlarm = off LowAlarm = on lLowAlarm undefined

Setting the Value of con_Level_Display

Events

event_Set_Digit(X, 0) AND event_Set_Digit(X, 1) AND event_Set_Digit(X, 2) AND
event_Set_Digit(X,3)

con_Level Display = X

—_—
e —

Setting the Value of con_Audible_Alarm

Events
@T(DURATION(out_Character = bel) > 0.5 s)
con_Audible_Alarm = silent

@T(out_Character = bel)
con_Audible_Alarm = sound

B.8.3 TRACEABILITY

The following capabilities from Software Requirements for the FLMS (see Appendix A) are fully or
partially satisfied by this class:

(2) When the level in the tank exceeds the the upper or lower limits, an alarm is triggered.

(5) If the system is unable to determine the fuel level of the tank, the system shall notify the
operator of the condition and shut down the pump.

(6) A capability to conduct system self-testing shall be provided.

(12) The system shall display fuel level and status alarms to the operator.

(13) Indications of low or high fuel levels (hazardous conditions) or unknown fuel levels shall be
presented to the operator.

(14) Whenever there is a hazardous condition or an unknown, the system shall provide audible and

visual alarms.

B-22

Appendix B. CoRE Specification of the Sofiware Requirements for the Fuel Level Monitoring System

B.9 CLASS_SWITCH
class_Switch encapsulates the mechanisms available to the software to determine the values of

switches that can be set by the user and the rules that determine when the FLMS considers the user
to have requested a selftest or reset of the FLMS.

B.9.1 CLASS INTERFACE
Definitions Other Classes Are Allowed to Use

Name
event_Reset
event_Selftest

B.9.2 ENCAPSULATED INFORMATION

Environmental Variable Glossary

Name Type Values Physical Interpretation
mon_Reset_Switch ENUMERATED pressed The push button labeled RESET is pressed.
released The push button labeled RESET is not
pressed.
mon_Selftest Switch ENUMERATED pressed The push button labeled SLFTST is pressed.
released The push button labeled SLFIST is not
pressed.

Constant, Event, and Term Glossary

Name Type Definition
event_Reset EVENT @T(DURATION(mon_Reset_Switch = pressed) = 3 s)
event_Selftest EVENT @T(DURATION(mon_Selftest Switch = pressed) = 0.5 s)

B.9.2.1 Input Variables

Reset Pushbutton
Acronym in_Reset_Device
Hardware FLMS Pushbutton Array
Values on (1b)
_ off (Ob)
Data Transfer PortC
Data Representation ResetDevice Bit 5 of byte

A-pendix B. CoRE Specification of the Softwere Requiremsents for the Fuc! Lovel Monitoriag System

Selftest Pushbutton
Acronym in_Selftest_Device
Hardware FLMS Pushbutton Array
Values on (1b)
off (0b)
Data Transfer PortC
Data Representation SelftestDevice Bit 7 of byte

B.9.2.2 IN Relation

Determining the Value of in_Reset_Device

Variable in_Reset_Device
Error NA
Delay 10ms

mon_Reset_Switch = pressed

mon_Reset_Switch = released
in_Reset_Device = off

Determining the Value of in_Selftest_Device

Variable in_Selftest_Device
Error N/A
Delay 10 ms
Condition
mon_Selftest_Switch = pressed mon_Selftest_Switch = released
in_Selftest_Device = on in_Selftest_Device = off

B.9.3 TRACEABILITY

The following capability from Software Requirements for the FLMS (see Appendix A) is fully or
partially satisfied by this class:

(11) The operator shall be provided with reset and test switches.
B.10 SAFETY REQUIREMENTS

1. The pump shall not operate when the system is unable to determine the fuel level.

2. The pump shall not operate for longer than the shutdown lock time with the fuel at an unsafe
level.

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoring System

3. The system shall always require operator intervention to enable the pumps when they have
been disabled.

4. The pump shall not operate while system self-test is being performed.

B.11 SECURITY REQUIREMENTS

None.

B.12 OTHER REQUIREMENTS

None.

B-25

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Moaitoring System

APPENDIX B INDEX

Class)

class_Fuel_Tank, definition of, B-9-B-12
class_In_Operation, definition of, B-7-B-8

class_Operator, definition of, B-16

dass_Operator_Communication, definition of,

B-17-B-22

class_Pump, definition of, B-13-B-14
class_Switch, definition of, B-23-B-24

class_Time, definition of, B-15

Constant
const_High Alarm_Col
definition of, B-17
used, B-21
const_High_Alarm_Row
definition of, B-17
used, B-21
const_High Fuel Limit
definition of, B-10
used, B-10
const_Hysteresis
definition of, B-10
used, B-10
const_LCB
definition of, B-10
used, B-11
const_Level_Display Row
definition of, B-17
used, B-18
const_Low_Alarm_Col
definition of, B-17
used, B-22
const_Low_Alarm_Row
definition of, B-17
used, B-22
const_Low_Fuel_Limit
definition of, B-10
used, B-10
const_Max_Level_Rate
definition of, B-10
used, B-10
const_Max_Test_Time
definition of, B-7
used, B-8
const_MaxCol
definition of, B-17
used, B-21
const_MaxRow
definition of, B-17
used, B-21
const_MinCol
definition of, B-17

used, B-21
const_MinRow, definition of, B-17
const_Shutdown_Lock_Time

definition of, B-7

used, B-8
const UCB

definition of, B-10

used, B-11

Controlled variable
con_Audible_Alarm

definition of, B-17

OUT relation, B-22

REQ relation, B-20
con_High_Alarm

definition of, B-17

OUT relation, B-21

REQ relation, B-18
con_Level_Display

definition of, B-17

OUT relation, B-22

REQ relation, B-19
con_Low_Alarm

definition of, B-17

OUT relation, B-22

REQ relation, B-19
con_Shutdown_Relay

definition of, B-13

OUT relation, B-14

REQ relation, B-13

Event

event_Reset
definition of, B-23
used, B-8

event_Selftest
definition of, B-23
used, B-8)

event_Set_Digit
definition of, B-18
used, B-22

Input variable
in_ClkPulse
definition of, B-15
IN relation, B-15
in_Diff_Press
definition of, B-10

Appendix B. CoRE Specification of the Software Requirements for the Fuel Level Monitoring System

IN relation, B-11
in_Reset_Device
definition of, B-23
IN relation, B-24
in_Selftest_Device
definition of, B-24
IN relation, B-24

Mode

mode_BadLevDev

definition of, B-8

used, B-13, B-18, B-19, B-20
mode_class_In_Operation

definition of, B-8

used, B-13, B-18, B-19, B-20
mode_Hazard

definition of, B-8

used, B-13, B-18, B-19, B-20
mode_Operating

definition of, B-8

used, B-13, B-18, B-19, B-20
mode_Shutdown

definition of, B-8

used, B-13, B-18, B-19, B-20
mode_Test

definition of, B-8

used, B-7, B-13, B-18, B-19, B-20

Monitored variable

mon_Fuel_Level
definition of, B-9
IN relation, B-11
NAT relation, B-10
used, B-10, B-19

mon_Fuel_Level_Unknown
definition of, B-9
IN relation, B-11
used, B-8

mon_Reset_Switch
definition of, B-23
IN relation, B-24
used, B-23

mon_Selftest_Switch
definition of, B-23
IN relation, B-24
used, B-23

mon_Time
definition of, B-15
IN relation, B-15
NAT relation, B-10
used, B-17

Output variable

out_Character

definition of, B-21

OUT relation, B-21, B-22

used, B-18
out_Cursor_Col

definition of, B-21

OUT relation, B-21, B-22

used, B-18
out_Cursor_Row

definition of, B-21

OUT relation, B-21, B-22

used, B-18
out_Shutdown

definition of, B-14

OUT relation, B-14

Term

term_Digit
definition of, B-17
used, B-18

term_Flash_On
definition of, B-17
used, B-18, B-20

term_Fuel_Level_Range
definition of, B-10
used, B-8, B-18, B-20

term_Inside_Hys_Range
definition of, B-10
used, B-§)

term_Level_Display_Digit
definition of, B-18
used, B-18

term_Test_Time
definition of, B-7
used, B-18, B-19, B-20

B-27

Appendix B. CoRE Specification of the Software Requiremeats for the Fuel Lovel Monitoring System

This page intentionally left blank.

APPENDIX C. CoRE MAPPING TO DOD-STD-2167A

C.1 INTRODUCTION

DOD-STD-2167A (DoD 1988) is the Defense System Software Development standard that helps you
establish uniform requirements for software development that are applicable throughout the system
life cycle. This section provides guidelines so that you can format the information found in a CoRE
specification into a Software Requirements Specification (SRS). This section was written assuming
that you have access to the standard and the SRS data item descriptions.

This section offers suggestions for using an existing CoRE software specification to produce an SRS.
The Consortium designed the CoRE requirements specification to be a “living” document (e.g., un-
dergoing constant change and revision); the documents required by the 2167A standard are viewed
as static and produced to fulfill the needs of the contract. Two strategies may be employed to create
the SRS:

e Create the CoRE specification as a “living” document, and create the SRS from a snapshot
of the CoRE specification.

» Create the SRS and the CoRE specification in parallel.

The mapping from the elements of a CoRE specification to the SRS sections is summarized in Table
C-1. Thefirst column provides the table of contents for the SRS. For each SRS section, the CoRE spec-
ification element that should be incorporated into a section is given along with a brief comment. The
sections that have ro direct mapping from the CoRE specification are left blank. The sections that
follow the table elaborate on the comments given in Table C-1.

Table C-1. Relationship of CoRE Specification E:zments to the Software Requirements Specification

Software Requirements Specification CoRE Specification Comment
1. Scope
1.1 Identification
1.2 CSCI overview
1.3 Document overview
2. Applicable documents
2.1 Government documents

2.2 Nongovernment documents

3. Engineering requirements

C-1

Appendix C. CoRE Mapping to DOD-STD-2167A

Table C-1, continued

Software Requirements Specification CoRE Specification Comment

3.1 CSCI external interface requirements | Relations tables between Provide a brief description
input and monitored for each IN and OUT
variables (IN) and between | relation.
controlled and output
variables (OUT)

3.2 CSCI capability requirements Mode classes and their Examine each mode class to
dependency diagrams determine the various system

modes. Each dependency
from a mode class will corre-
late each capability to each
mode.

3.2.X (Capability name and project-unique | Class structure Each CoRE dass is

identifier) considered a capability. The

encapsulation structure for
each class dictates the
constituent capabilities
(Sections 3.2.x.y).

3.3 CSCI internal interfaces Monitored and controlled The system context diagram
variables may be presented in this

section.

3.4 CSCI data element requirements Monitored variables, List the definitions of the
controlled variables, monitored and controlled
input variables, variables for the internal data
output variables items and the input and out-

put variables for the external
data items.

3.5 Adaptation requirements

Obtained from NAT relation

NAT relation is intended to
capture constraints on the
environmental variables.
Could also be listed as
nonfunctional requirements.

3.5.1 Installation-dependent data

Obtained from NAT relation

NAT relation is intended to
capture constraints on the
environmental variables.

3.5.2 Operational parameters

Obtained from NAT relation

NAT relation is intended to
capture constraints on the
environmental variables.

3.6 Sizing and timing requirements

Obtained from REQ relation

REQ relation template
provides sizing and timing
information (tolerance and
scheduling).

3.7 Safety requirements

Listed as nonfunctional
requirements.

3.8 Security requirements

Listed as nonfunctional
requirements.

3.9 Design constraints

3.10 Software quality factors

Cc2

Appendix C. CoRE Mapping to DOD-STD-2167A

Table C-1, continued

Software Requirements Specification CoRE Specification Ccmment

3.11 Human performance/human
engineering requirements

3.12 Requirements traceability

4. Quality requirements

4.1 Qualification methods

4.2 Special qualification requirements

5. Preparation for delivery
6. Notes

C.2 SOFTWARE REQUIREMENTS SPECIFICATION

The SRS specifies the engineering and qualification requirements for a computer software
configurationitem (CSCI). The SRS is used to provide the detailed requirements for a CSCI allocated
from the System Segment Specification. It is also used by the contractor as the basis for the design and
formal testing of a CSCI. The sections that follow elaborate on the mapping provided by Table C-1.

C.2.1 SRS PARAGRAPH 3.1: CSCI EXTERNAL INTERFACE REQUIREMENTS

The CoRE IN and OUT relations and corresponding variables provide a description of how the
software reads or writes from or to required devices and software subsystems. The devices and
software subsystems that the CSClIs are required to use are specified in the Interface Requirements
Specification or Interface Control Document for the CSCI. The variables and IN and OUT relations
provide traceability information needed by this section. You need to provide a brief description of
each interface.

C.2.2 SRS PARAGRAPH 3.2: CSCI CAPABILITY REQUIREMENTS

System modes and states provide a history of one or more of the monitored variables. Modes and
states are both encapsulated in CoRE’s mode classes. To identify the system modes and states, ex-
amine each mode class and determine which modes are used by other classes. The dependency dia-
gram for each mode class gives you the capabilities that are affected by the mode. Each capabilitymaps
to a CoRE class. This information can be captured in a tabular format like the one shown in Table C-2.
An X in a row correlates a capability or constituent capability to a particular mode.

Table C-2. Example of CSCI System States Mapping to Capabilities

mode_class_in_Operation class_Pump class_Operator
mode_Operating X X
mode_Hazard X
mode_Shutdown X

mode_Test X X
mode_BadLevDev X X

C3

Appendix C. CoORE Mapping to DOD-STD-2167A

C.2.3 SRS PARAGRAPH 3.2.x: (CAPABILITY NAME AND PROJECI:-UNIQUE IDENTIFIER)

The capabilities of a CSCI correspond to the classes identified on the top-level dependency graph
(level 0). Each of these classes, in turn, can be decomposed into subordinate classes. This imposes a
hierarchy, called the encapsulation structure, where the subordinate classes become constituent
capabilities. Hierarchical requirements structures have normally been used to simplify expressing the
capabilities of a CSCI; with CoRE, a hierarchical structure is created to helpmanage the requirements
development. This structure should be reflected in numbering the capabilities.

The names of the classes should be meaningful and unique. When taken with the information provided
by the class template, a class name should provide a clear picture of the capability being expressed by
the class. The class description provides the purpose of the capability. The dependencies into the class
are described via information found in the class template.

C.2.4 SRS PARAGRAPH 3.3.: CSCI INTERNAL INTERFACES

The interfaces between capabilities are defined in terms or expressions of monitored variables. The
system context diagram shows the boundaries between the software and the monitored and controlled
variables.

C.2.5 SRS PARAGRAPH 3.4.: CSCI DATA ELEMENT REQUIREMENTS

For data elements internal to the CSCI, list the definitions of the monitored and controlled variables
and terms. The information that CoRE requires you to capture about each of these provides the
information required by this section.

For data elements external to the CSCI, list the definitions of the input and output variables. The

information that CoRE requires you to capture about each of these provides the informationrequired
by this section.

C.2.6 SRS PARAGRAPH 3.5.: ADAPTATION REQUIREMENTS
This section is intended to specify the requirements for adapting the CSCI to site-unique conditions
and to changes in the system environment. These requirements are captured in the NAT relation,”

which captures constraints placed on the environmental variables in which the system is expected to
operate.

C.2.7 SRS PARAGRAPH 3.5.1.: INSTALLATION-DEPENDENT DATA

Site-unique data can be considered a constraint on the environment. If you choose to capture this
information as a constraint, the appropriate NAT relations would be listed in this section.

C.2.8 SRS PARAGRAPH 3.5.2.: OPERATIONAL PARAMETERS

Operational needs can be considered constraints on the environment. If you choose to capture this
information as constraints, the appropriate NAT relations would be listed in this section.

LIST OF ABBREVIATIONS AND ACRONYMS

CDU Command and Display Unit

C31 command, control, communications, and intelligence
cm centimeter

CoRE ' Consortium Requirements Engineering
CRT cathode-ray tube

CSCI computer software configuration item
ERD entity-relationship diagram

FLMS Fuel Level Monitoring System

IN input

ms millisecond

NAT nature

ouT output

REQ required

RTCP Radio Tune Control Panel

s second

SRS Software Requirements Specification

Abb-1

List of Abbreviations and Acronyms

This page intentionally left blank.

Abb-2

GLOSSARY

Abstraction " A view of the problem that extracts the essential
information relevant to a particular purpose and ig-
nores the remainder of the information (IEEE
1983).

Accuracy A quantitative measure of the magnitude of error
(IEEE 1990). Use it to characterize the discrepancy
between the actual values of monitored and input
variables and of controlled and output variables.

Attribute Characterizes some important aspect or fact about an
entity.
Behavioral model The behavioral model defines the required,

externally visible behavior in terms of two relations
from monitored variables to controlled variables.
These relations are NAT and REQ.

Boundary class Defines monitored and controlled variables and
potentially encapsulates the corresponding IN and
OUT relations. Boundary classes serve to abstract
from details about the software’s interface with the
environment.

Class A template for an object or a set of related objects.
A class defines a set of requirements or terms com-
mon to one or more objects. A CoRE requirements
specification is written in terms of CoRE classes.

Class model The set of mechanisms provided by CoRE for
defining classes and their relationships. Provides a
set of facilities for packaging the behavioral model as
a set of classes and provides the mechanisms to man-
age requirements changes, create reusable require-
ments, and develop parts of the software in parallel.

Class structure The set of classes and their relationships for a
particular CoRE specification. The class structure
for a CoRE specification is constructed using the
elements of the class model.

Glo-1

Glossary

Complete

Compound condition

Condition

Conditién table

Consistent

Controlled variable

Controlled variable functions

Demand

Dependency

Depends-on relation

Domain

A CoRE specification is complete when the
behavioral model defines the required values of the
controlled variables for all possible values of the
monitored variables, the values of the input for all
possible vulues of the monitored variables, and the
values of the output for all possible values of the
controlled variables.

Formed by connecting two or more conditions using
the logical operators AND, OR, or NOT.

Boolean expression (predicate) of the environmental
variables that holds for a continuous, measurable peri-
od of time. A condition characterizes some aspect of
the environmental state.

A tabular representation of a function where the
domain of the function comprises mode and a set of
mutually exclusive conditions.

A CoRE specification is internally consistent when
the CoRE controlled variable functions map each
value in the domain to exactly one value in the range
and when no two parts of the specification are
mutually contradictory.

Denotes a quantity in the environment that the
software sets.

Refers to the set of functions used to describe the
REQ relation for a controlled variable. This includes
the value function, accuracy, and timing.

Scheduling requirement that is associated with a
controlled variable when the controlled variable
must be set in response to a periodic event.

Exists between classes X and Y when class X uses T,
where T can be a monitored variable, term, mode, or
event provided by class Y only if X employs T in its
definition.

Denotes which classes use what information
provided by other classes.

A relation pairs the elements of one set with the
elements of a second set. The first set is called the
domain of the relation (see Range).

Glo-2

Gilossary

Dynamic view

Encapsulation

Encapsulates relation

Encapsulation structure

Environmental variables

Entity

Event
Event expression

Event occurrence

Event table

Expression

Finite state machine

Four-variable model

Captures the required timing behavior and scheduling
characteristics, i.e., when the software must initiate or
complete the required behavior.

Process of hiding details and other decisions by
providing an abstract interface.

Class X encapsulates class Y if the definition of Y is
part of the encapsulated information of X.

The encapsulates relation induces a hierarchy on the
set of classes called the encapsulation structure.

CoRE views a system as existing within and interacting
with an environment. The quaatities in the environ-
ment that are relevant to the software are denoted by
mathematical variables called environmental
variables.

A representation of any aspect of the system
environment of interest to the system that can describe
physical things, roles played by persons or organiza-
tions, incidents, and interactions thz¢ are significant to
the software.

Occurs when a condition changes value.
An expression used to represent an event occurrence.

A moment in time when a condition’s value changes.
Each event occurrence is instantaneous (takes zero
time) and atomic (all or none occurs).

Tabular representation of a function where the
domain of the function comprises modes and events.

A formula that defines the computation of a value
using a logical symbol or a meaningful combination
of one or more variables.

A computational model consisting of a finite number
of states and transitions between those states,
possibly with accompanying actions (IEEE 1990).

The CoRE behavioral model is based on a
four-variable model in which the four variables are
monitored, controlled, input, and output.

Glossary

Function
Functional view
Generalization/specialization structure

Hidden information
IN relation

Inheritance

Input variable

Interface

Mode

Mode machine

Monitored variable

NAT relation

A relation between two sets in which each element of
the one set (the domain) maps to no more than one
element of the other set (the range).

A view of the software behavioral requirements as a
set of functions, i.e., what values the system must
produce.

Hierarchical relationship denoting inheritance
among a set of CoRE classes. A superclass defines a
set of common properties inherited by its subclasses.

Details or decisions that are hidden in a class.

Describes the relationship between the monitored
variables and the available inputs.

Denotes the requirements or terms that are defined
by a superclass and shared among its subclasses.

A variable representing a discrete input to the
software. The complete definition provides a precise
description of how the software reads from an input
device, including the protocol for reading from a de-
vice and a mapping between abstract values and the
bit patterns read from the device.

Information defined by a class that can be used by
other classes in their definitions.

A state of a mode machine.

A form of finite state machine. Includes a collection
of system modes and the transitions between them.
Differs from a finite state machine in that a mode
machine does not define actions.

Denotes an environmental quantity that the software
must track.

Describes those constraints placed on the system by
the external environment (nature). These
constraints are properties of the environment that af-
fect the software but exist whether the software exists
or not.

Glo-4

Glossary

Object

OUT relation

Output variable

Periodic

Precision

Predicate

Range

Relation

REQ relation

Selector table

An object is a subset of the definition of REQ, NAT,
IN, and OUT (including definitions of the variables)
for a given specification written in terms of the four-
variable model. Every object must be an instance of
a class.

Describes the relationship between the controlled
variables and the available software outputs.

A variable representing a discrete output of the
software. The complete definition provides a precise
description of how the software writes to an output
device, including the protocol for writing to a device
and a mapping between abstract values and the bit
patterns sent to the device.

A scheduling requirement associated with a
controlled variable when the controlled variable
must be set or updated at regular, fixed time
intervals.

The degree of exactness or discrimination with which
a quantity is stated (IEEE 1990). For a monitored
variable, the precision expresses how accurately the
software is required to measure the actual quantity
that the monitored variable denotes. For a controlled
variable, the precision expresses how accurately the
software must be able to set the actual quantity that
the controlled variable denotes.

A function whose range is the elements {true, false}.

A relation pairs the elements of one set with the
elements of a second set. The second set is called the
range of the relation (see Domain).

Pairs the elements of one set (the domain) with the
elements of another (the range). Each element of the
first set can be paired with one or more elements of
the second.

Describes properties that the software is required to
maintain between the monitored and controlled
variables.

Tabular representation of mode-dependent informa-
tion.

Glo-5

Glossary

State

Subclass

Superclass

Term

Testable

Tolerance
Transition

Undesired event

Value function

The values assumed at a given instant by the set of
environmental variables (monitored and controlled).

A class that is defined as an instance of a superclass.
A subclass specializes the definition of its superclass
by adding or constraining requirements.

A class that defines a set of requirements or terms
that are common among two or more CoRE classes.

Named expression of one or more monitored
variables (or other terms). A formula that defines the
computation of a value using one or more monitored
variables to which you have assigned a name.

A requirement is considered testable if it is possible
to determine, for any given test case (i.c., an input
and output), whether the output represents an ac-
ceptable behavior of the software given the input and
the system state. In other words, testable require-
ments distinguish precisely the set of acceptable soft-
ware behaviors in terms of the observable behavior
of the system.

The amount of variation allowed from an ideal value
of a controlled variable.

Occurs between modes as a result of a change in one
or more environmental variables.

Failure of a system component or of the system itself.

Maps each value of the monitored variables in its
domain to the ideal value of the controlled variable.
The value function specifies the ideal behavioral
requirements of a controlled variable.

Glo-6

Alspaugh, Thomas A., Stuart
R. Faulk, Kathryn Heninger
Britton, R. Alan Parker, David
L. Parnas, and John E. Shore
1992

Chen, Peter
1976

Department of Defense
1988

Hatley, D., and I. Pirbhai
1988

Heninger, Kathryn L.
1980

IEEE
1990

1983

Pamnas, David L., and
Jan Madey
1990

Shlaer, S., and S. Mellor
1988

Van Schouwen, A.J.
1990

REFERENCES

Software Requirements for the A-7E Aircraft,
NRL/FR/5530-92-9194. Washington, D.C.: Naval Research
Laboratory.

The Entity-Relationship Model—Toward a Unified View of
Data. ACM Transactions on Dataabse Systems 1, 1:9-36.

Defense System Software Development, DOD-STD-2167A.
Washington, D.C.: Department of Defense.

Strategies for Real-Time System Specification. New York, New
York: Dorset House.

Specifying Software Requirements for Complex Systems: New
Techniques and Their Application. IEEE TSE SE6:2-13.

IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE STD 610.12-1990. Institute of Electrical and
Electronic Engineers.

IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE STD 729-1983. Institute of Electrical and
Electronic Engineers.

Functional Documentation for Computer Systems Engineering,
(Version 2), CRL Report No. 237. Hamilton, Ontario:
McMaster University.

Object-Oriented Systems Analysis: Modeling the World in Data.
Englewood Cliffs, New Jersey: Prentice-Hall.

The A-7 Requirements Model: Re-examination for Real-Time
Systems and an Application to Monitoring Systems, Technical
Report 90~276. Hamilton, Ontario: Queen’s University.

References

This page intentionally left blank.

BIBLIOGRAPHY

Embley, David W,, Barry D. Kurtz, and Scott N. Woodfield. Object-Oriented Systems Analysis: A
Model-Driven Approach. Englewood Cliffs, New Jersey: Prentice-Hall, 1992.

Faulk, Stuart, John Brackeft, Paul Ward, and James Kirby, Jr. The Core Method foi Real-Time
Requirements. JEEE Software 5, 9:22-33, 1992.

Heitmeyer, C., and J. McLean. Abstract Requirements Specification: A New Approach and Its
Application. IEEE TSE SE 95:580—589, 1983.

Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey: Prentice-Hall, 1991.

Bib-1

Bibliography

This page intentionally left blank.

Bib-2

Attribute
definition of, 5-2
enumerated, 7-4
example of, 5-2
identification of, 7-5
in FLMS, 7-6
matrix, 5-3
numeric, 7-5
on ERD, 5-2

Balancing
definition of, 5-9
illustration, 5-9
Behavioral model, 2-5
definition of, 2-5
description, 1-2
reasons for, 2-7, 4-1_
relations
illustration, 2-7
IN, 2-6
NAT, 2-6
OUT, 2-6
REQ, 2-6
state machine, 4-6
Behavioral requirement
behavioral model, 2-1
class model, 2-1
definition of, 2-1
tolerance, 4-1
Boundary dlass
construction of, 9-2

input and output variables, 11-2

interface, 9-4
example of, 9-4

versus encapsulation, 9-4

purpose of, 8-1

INDEX

Class

class_Fuel_Thnk, definition of, B-9-B-12
class_In_Operation, definition of, B-7-B-8

class_Operator, definition of, B-16

TP

class_Operator_Communication, definition of,

B-17-B-22
class_Pump, definition of, B-13-B-14
class_Switch, definition of, B-23-B-24
class_Time, definition of, B-15
definition of, 2-12
template for, 5-14
Class interface
definition of, 5-9
example of, 9-7, B-7
goals of, 5-9
illustration, 5-10
Class model, 2-11
See also Packaging
concepts, 5-1
contents of, 5-4
interface, 5-1
dependencies on, 5-1
semantics, 5-1
syntax, 5-1
Class structure
See also Packaging
capability name, C-2
construction of, 9-2
definition of, 2-11
evaluation of, 9-12
inheritance, 2-14
messages, 2-16
notation, 5-6
representation, 5-5
revisiting, 10-11
specification, 5-9
subclass, 2-14
superclass, 2-14
use of dependency graph, 9-3
Condition
compound, 4-4

Index

definition of, 4-1
example of, 4-4
predefined
ENTERED, 4-9
EXITED, 4-9
INMODE, 4-9
semantics of, 4-9
sustaining, 10-11
Condition table
See also Mode machine
completed sample, 10-7
create value function, 10-6
defining IN relation, 11-4
defining OUT relation, 11-5
modes, 10-7
template for, 4-10
Constant
const_High Alarm_Col
definition of, B-17
used, B-21
const_High_Alarm_Row
definition of, B-17
used, B-21
const_High_Fuel_Limit
definition of, B-10
used, B-10
const_Hysteresis
definition of, B-10
used, B-10
const_LCB
definition of, B-10
used, B-11
const_Level Display Row
definition of, B-17
used, B-18
const_Low_Alarm_Col
definition of, B-17
used, B-22
const_Low_Alarm_Row
definition of, B-17
used, B-22
const_Low_Fuel Limit
definition of, B-10
used, B-10
const_Max_Level Rate
definition of, B-10
used, B-10
const_Max_Test_Time
definition of, B-7
used, B-8

const_MaxCol
definition of, B-17
used, B-21
const_MaxRow
defipition of, B-17
used, B-21
const_MinCol
definition of, B-17
used, B-21
const_MinRow
definition of, B-17
used, B-21
const_Shutdown_Lock_Time
definition of, B-7
used, B-8
const_UCB
definition of, B-10
used, B-11
Constraint
demand, 10-5
example of, 10-8
periodic, 10-8
example of, 10-8
scheduling, 10-8
timing, 10-8
oconsistency check, 10-12
tolerance, 10-9
Context diagram. See System context diagram
Controlled state function
definition of, 2-8
range, 2-9
Controlled variable
See also Environmental variable
con_Audible_Alarm
definition of, B-17
OUT relation, B-22
REQ relation, B-20
con_High_Alarm
definition of, B-17
OUT relation, B-21
REQ relation, B-18
con_Level_Display
definition of, B-17
OUT relation, B-22
REQ relation, B-19
con_Low_Alarm
definition of, B-17
QOUT relation, B-22
REQ relation, B-19

con_Shutdown_Relay
definition of, B-13
OUT relation, B-14
REQ relation, B-13
data element requirement, C-2
defined with OUT relation, 4-2
defining function, 4-1
definition of, 2-5
delay requirement, 4-3
determining range of values, 11-5
example of, B-13
identification of, 8-2
internal interface, C-2
output resources, 11-1
periodic or demand, 8-10
precision specification, 8-6
scheduling requirement, 4-3
value of, 4-2

Controlled variable function

analysis
completeness, 12-1
consistency, 12-2
definition of, 8-7
domain, 8-4

CoRE

definition of, 1-1
DoD-STD-2167A specification (SRS), C-1
dynamic view, 4-3
representation, 4-12
functional view, 4-1
illustration, 4-2
representation, 4-3
process, 6-1
purpose of, 2-2
representation of, 4-1
tables, 4-9
condition, 4-10
event, 4-10
selector, 4-12

Demand behavior, specification of, 10-5
Dependency graph

See also Class structure
example of, B-6
notation, 5-7

reasons for, 9-3
relationships, 5-7

Depends-on relation

definition of, 2-13
illustration of, 2-13

Encapsulated information
decomposition, 5-10
example of, B-7
identification of, 9-3
illustration, 5-10
IN and OUT relations, 11-2
input and output variables, 11-2
notation, 5-10

Entity
definition of, 5-2
example of, 5-2
on ERD, 5-2
template of, 5-2

Environmental variable, 2-5
analysis

completeness, 12-1
consistency, 12-1
controlled variable, 2-5
definition of, 8-5
evaluation criteria
completeness, 10-11
consistency, 10-12
identifying, 8-2
initial value, 10-3
sustaining condition, 10-3
from information model, 5-2
monitored variable, 2-5
definition of, 8-5
state characterization, 4-1
template
physical interpretation, 4-3
type, 4-3
values, 4-3

Event
based on, 4-2
definition of, 4-1
event_Reset

definition of, B-23
used, B-8
event_Selftest
definition of, B-23
used, B-8
event_Set_Digit
definition of, B-18
used, B-22
example of, 9-9, B-16
expression, 4-4
@F expression, 4-4
@T expression, 4-4
example of, 4-4

Index

order of evaluation, 4-5
occurrence, 4-4
periodic timing, 10-6
Event table, template for, 4-11
Existing skills
requirement for, 1-1
where met, 2-15

FLMS, B-§
illustration, 3-1
narrative, 3-1
Formal model
requirement for, 1-1
where met, 2-7
Four-variable model
definition of, 2-5
relations of, 4-2
use in CoRE, 4-1

Global checking
completeness, 12-3
consistency, 12-3

Graphical specifications
requirement for, 1-1
where met, 2-15

Guidance, requirement for, 1-2

Guidebook
description, 1-2
organization, 1-3
scope, 1-3
use of, 1-4

Hardware resources
definition of, 11-1
example of, 11-1

Hidden information. See Encapsulated information

Idealized CoRE process
definition of, 6-1
stages of, 6-3
class structuring, 9-1
define hardware interface, 11-1

IN relation
analysis
completeness, 12-3
consistency, 12-3
definition of, 2-6, 2-9, 11-3
domain of, 2-10
example of, B-15
external interface requirements, C-2
hardware interface, 6-6
range of, 2-10
Information model
See also Class model
attributes, 7-3
example of, 7-4
sources of, 7-3
composition of, 7-3
construction of
behavioral model, 5-2
class model, 5-2
definition of, 7-2
entities, 7-5
example of, 7-6
sources of, 7-5
example of, 7-6
identifying
classes, 5-2
environmental variables, 5-2
relations, 7-5
example of, 7-9
sources of, 7-6
representation of
attribute matrix, 7-9
ERD, 7-6
Inheritance
description of, 5-12
generalization/specialization, 5-12
notation, 5-13
Initial mode
identification of, 4-7
transition from, 4-7

‘ Input variable

allocation of, 11-2

completing definition, 11-3
data element requirement, C-2
definition of, 2-6

evaluation criteria, 11-6
example of, B-10

IN relation, 11-1

detailed behavior specification, 10-1
identify environmental variables, 7-1
preliminary behavior specification, 8-1

in_ClkPulse
definition of, B-15
IN relation, B-15

Ind-4

in_Diff_Press
definition of, B-10
IN relation, B-11
in_Reset_Device
definition of, B-23
IN relation, B-24
in_Selftest_Device
definition of, B-24
IN relation, B-24
mapping to monitored variable, 11-5
specification of, 11-2
template for, 11-3
Interface
definition of, 2-12
specification of, 11-2
Internal class, purpose of, 6-4

Mode
analysis
completeness, 12-2
consistency, 12-2
based on, 4-2
example of, 9-7, B-7
identification of, 8-9
mode_BadLevDev
definition of, B-8
used, B-13, B-18, B-19, B-20
mode_class_In_Operation
definition of, B-8
used, B-13, B-18, B-19, B-20
mode_Hazard
definition of, B-8
used, B-13, B-18, B-19, B-20
mode_Operating
definition of, B-8
used, B-13, B-18, B-19, B-20
mode_Shutdown
definition of, B-8
used, B-13, B-18, B-19, B-20
mode_Test
definition of, B-8
used, B-7, B-13, B-18, B-19, B-20
system, 8-11
Mode class. See Internal class; Mode machine
Mode machine
See also Internal class
capability requirements, C-2
construction of, 9-2, 10-6
sample, 10-7
contents of, 4-6

defining set of modes, 8-12
definition of, 8-10
example of, 8-12
identification of, 8-10
illustration, 4-2
initial value, 10-11
properties, 4-9
purpose of, 4-1
refinement of, 10-9
representation of
See also Mode transition diagram
example, 4-7
mode transition table, 4-7
state transition diagram, 8-12
specification of, 6-4
state machine, 4-6
Mode transition diagram
definition of, 4-7
transition events, 4-7
Mode transition table
definition of, 4-7
example of, 4-8
Monitored state function
definition of, 2-8
domain of REQ, 29
Monitored variable
See also Environmental variable
data element requirement, C-2
defined with IN relation, 4-2
definition of, 2-5
determining range of values, 11-4
example of, 9-5, B-9
for undesired event, 4-17
ideal value function, 4-1
identification of, 8-3, 8-8
input resources, 11-1
internal interface, C-2
mon_Fuel_Level
definition of, B-9
IN relation, B-11
NAT relation, B-10
used, B-10, B-19
mon_Fuel_Level_Unknown
definition of, B-9
IN relation, B-11
used, B-8
mon_Reset_Switch
definition of, B-23
IN relation, B-24
used, B-23

Ind-5

Index

mon_Selftest_Switch
definition of, B-23
IN relation, B-24
used, B-23

mon_Time
definition of, B-15
IN relation, B-15
NAT relation, B-10
used, B-17

timing constraint, 4-1

tolerance function, 4-1

use in terms, 4-1

NAT relation
adaptation requirement, C-2
definition of, 2-6, 2-8
domain of, 2-8
operational parameter, C-4
range of, 2-8
specification of, 4-16
Nonalgorithmic specification
requirement for, 1-1, 2-3
where met, 2-7
Notation
conventions, 1-4
requirement for, 1-1

Object
as class instance, 5-10
definition of, 2-12
specification of, 5-11

Object-oriented model
requirement for, 1-1
where met, 2-1, 2-11

OUT relation
analysis :

completeness, 12-3
consistency, 12-3

definition of, 2-6, 2-9, 11-3
domain of, 2-10
example of, B-14
external interface requirements, C-2
hardware interface, 6-6
range of, 2-10

Output variable
allocation of, 11-2
completing definition, 11-3 °
data element requirement, C-2

definition of, 2-6, 11-2
evaluation criteria, 11-6
example of, B-14
mapping to controlled variable, 11-§
OUT relation, 11-1
out_Character
' definition of, B-21

OUT relation, B-21, B-22

used, B-18
out_Cursor_Col

definition of, B-21

OUT relation, B-21, B-22

used, B-18
out_Cursor_Row

definition of, B-21

OUT relation, B-21, B-22

used, B-18
out_Shutdown

definition of, B-14

OUT relation, B-14
specification of, 11-2
template for, 11-3

Packaging
See also Class structure; Encapsulated
information
allocation of information, 9-1
illustration (canonical), 2-15
creating classes for, 9-2
definition of, 2-1
goals of, 9-1
reasons for, 2-4
relationships, 2-12
dependency, 2-13
encapsulation, 2-12
generalization/specialization, 2-14
Periodic behavior, specification of, 10-6
Physical interpretation
enumerated variables, 8-7
use of, 8-7
Precision
specification of, 8-6
use of, 8-6
Procedure
example of, FLMS, 8-11
specification of, 8-11

Recursion. See Recursion

Ind-6

Index

Relationship
aggregation, 5-3
illustration, 5-4
application-specific, 5-4
description of, 5-2
generalization/specialization, 5-3
illustration, 5-3
REQ relation
consistency, 10-12
definition of, 2-6, 2-9
derived information, 8-12
domain of, 2-9
example of, B-13
range of, 2-9
sizing and timing requirement, C-2
specification of, 4-15
Rigorous specifications
requirement for, 1-1
where met, 2-1, 2-4

Scheduling
demand, 4-14
illustration, 4-14
identify requirements, 8-9
periodic, 4-13
constraint, 10-6
illustration, 4-14
Selector table
create value function, 10-6
definition of, 4-12
example of, 4-12
template for, 4-12
Separation of concerns
requirement for, 2-3
where met, 2-5
State
representation of
decision table, 4-6
state transition diagram, 4-6
value of, 4-6 '
System constraint
evaluation criteria, 7-10
exit criteria, 7-10
identification of
environmental variable, 7-3
likely requirements changes, 7-9
System context diagram
development of, 8-7
example of, B-5

leveling, 5-8
illustration, 5-8
notation, 5-6
representation of overview, 5-7
use of, 5-6
System function
example of, 8-11
representation of, 8-11

Term
analysis
completeness, 12-2
consistency, 12-2
construction of, 9-4
example of, 9-5, B-10
reasons for, 4-6
term_Digit
definition of, B-17
used, B-18
term_Flash_On
definition of, B-17
used, B-18, B-20
term_Fuel_Level_Range
definition of, B-10
used, B-8, B-18, B-20
term_Inside_Hys_Range, definition of, B-10
term_Level_Display_Digit
definition of, B-18
used, B-18
term_Test_Time
definition of, B-7
used, B-19, B-20
type, 4-6
use of, 4-1
value, 4-6
Timing and scheduling requirements
constraints, 10-12
template for, 10-11
Tolerance, function, 10-12

Undesired event
description of, 4-17
inability to determine value, 8-4
specification of, 4-17

Value function
See also Controlled variable
analysis of, 10-6
completeness, 10-11

Index

condition table, 10-12

creation of, 10-4

event table, 10-12

initial value, 10-11

periodic timing constraint, 10-6
response to event, 10-6
specification of, 10-1

Value-dependent variation

definition of, 10-9
example of, 10-9

Ind-8

